Stephen Skalicky
2025
Testing Humor Theory Using Word and Sentence Embeddings
Stephen Skalicky
|
Salvatore Attardo
Proceedings of the 1st Workshop on Computational Humor (CHum)
A basic prediction of incongruity theory is that semantic scripts in verbal humor should be in a state of incongruity. We test this prediction using a dataset of 1,182 word/phrase pairs extracted from a set of imperfect puns. Incongruity was defined as the cosine distance between their word vector representations. We compare these pun distances against similarity metrics for the pun words against their synonyms, extracted from WordNet. Results indicate a significantly lower degree of similarity between pun words when compared to their synonyms. Our findings support the basic predictions of incongruity theory and provide computational researchers with a baseline metric to model humorous incongruity.
2018
Linguistic Features of Sarcasm and Metaphor Production Quality
Stephen Skalicky
|
Scott Crossley
Proceedings of the Workshop on Figurative Language Processing
Using linguistic features to detect figurative language has provided a deeper in-sight into figurative language. The purpose of this study is to assess whether linguistic features can help explain differences in quality of figurative language. In this study a large corpus of metaphors and sarcastic responses are collected from human subjects and rated for figurative language quality based on theoretical components of metaphor, sarcasm, and creativity. Using natural language processing tools, specific linguistic features related to lexical sophistication and semantic cohesion were used to predict the human ratings of figurative language quality. Results demonstrate linguistic features were able to predict small amounts of variance in metaphor and sarcasm production quality.