Talha Çolakoğlu


2021

pdf bib
MultiLexNorm: A Shared Task on Multilingual Lexical Normalization
Rob van der Goot | Alan Ramponi | Arkaitz Zubiaga | Barbara Plank | Benjamin Muller | Iñaki San Vicente Roncal | Nikola Ljubešić | Özlem Çetinoğlu | Rahmad Mahendra | Talha Çolakoğlu | Timothy Baldwin | Tommaso Caselli | Wladimir Sidorenko
Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)

Lexical normalization is the task of transforming an utterance into its standardized form. This task is beneficial for downstream analysis, as it provides a way to harmonize (often spontaneous) linguistic variation. Such variation is typical for social media on which information is shared in a multitude of ways, including diverse languages and code-switching. Since the seminal work of Han and Baldwin (2011) a decade ago, lexical normalization has attracted attention in English and multiple other languages. However, there exists a lack of a common benchmark for comparison of systems across languages with a homogeneous data and evaluation setup. The MultiLexNorm shared task sets out to fill this gap. We provide the largest publicly available multilingual lexical normalization benchmark including 13 language variants. We propose a homogenized evaluation setup with both intrinsic and extrinsic evaluation. As extrinsic evaluation, we use dependency parsing and part-of-speech tagging with adapted evaluation metrics (a-LAS, a-UAS, and a-POS) to account for alignment discrepancies. The shared task hosted at W-NUT 2021 attracted 9 participants and 18 submissions. The results show that neural normalization systems outperform the previous state-of-the-art system by a large margin. Downstream parsing and part-of-speech tagging performance is positively affected but to varying degrees, with improvements of up to 1.72 a-LAS, 0.85 a-UAS, and 1.54 a-POS for the winning system.

2020

pdf bib
Filtering Noisy Parallel Corpus using Transformers with Proxy Task Learning
Haluk Açarçiçek | Talha Çolakoğlu | Pınar Ece Aktan Hatipoğlu | Chong Hsuan Huang | Wei Peng
Proceedings of the Fifth Conference on Machine Translation

This paper illustrates Huawei’s submission to the WMT20 low-resource parallel corpus filtering shared task. Our approach focuses on developing a proxy task learner on top of a transformer-based multilingual pre-trained language model to boost the filtering capability for noisy parallel corpora. Such a supervised task also helps us to iterate much more quickly than using an existing neural machine translation system to perform the same task. After performing empirical analyses of the finetuning task, we benchmark our approach by comparing the results with past years’ state-of-theart records. This paper wraps up with a discussion of limitations and future work. The scripts for this study will be made publicly available.

2019

pdf bib
Normalizing Non-canonical Turkish Texts Using Machine Translation Approaches
Talha Çolakoğlu | Umut Sulubacak | Ahmet Cüneyd Tantuğ
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

With the growth of the social web, user-generated text data has reached unprecedented sizes. Non-canonical text normalization provides a way to exploit this as a practical source of training data for language processing systems. The state of the art in Turkish text normalization is composed of a token level pipeline of modules, heavily dependent on external linguistic resources and manually defined rules. Instead, we propose a fully automated, context-aware machine translation approach with fewer stages of processing. Experiments with various implementations of our approach show that we are able to surpass the current best-performing system by a large margin.