Tanzir Pial
2023
GNAT: A General Narrative Alignment Tool
Tanzir Pial
|
Steven Skiena
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Algorithmic sequence alignment identifies similar segments shared between pairs of documents, and is fundamental to many NLP tasks. But it is difficult to recognize similarities between distant versions of narratives such as translations and retellings, particularly for summaries and abridgements which are much shorter than the original novels. We develop a general approach to narrative alignment coupling the Smith-Waterman algorithm from bioinformatics with modern text similarity metrics. We show that the background of alignment scores fits a Gumbel distribution, enabling us to define rigorous p-values on the significance of any alignment. We apply and evaluate our general narrative alignment tool (GNAT) on four distinct problem domains differing greatly in both the relative and absolute length of documents, namely summary-to-book alignment, translated book alignment, short story alignment, and plagiarism detection—demonstrating the power and performance of our methods.
Analyzing Film Adaptation through Narrative Alignment
Tanzir Pial
|
Shahreen Aunti
|
Charuta Pethe
|
Allen Kim
|
Steven Skiena
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Novels are often adapted into feature films, but the differences between the two media usually require dropping sections of the source text from the movie script. Here we study this screen adaptation process by constructing narrative alignments using the Smith-Waterman local alignment algorithm coupled with SBERT embedding distance to quantify text similarity between scenes and book units. We use these alignments to perform an automated analysis of 40 adaptations, revealing insights into the screenwriting process concerning (i) faithfulness of adaptation, (ii) importance of dialog, (iii) preservation of narrative order, and (iv) gender representation issues reflective of the Bechdel test.