Thanmay Jayakumar


2024

pdf bib
RomanSetu: Efficiently unlocking multilingual capabilities of Large Language Models via Romanization
Jaavid J | Raj Dabre | Aswanth M | Jay Gala | Thanmay Jayakumar | Ratish Puduppully | Anoop Kunchukuttan
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This study addresses the challenge of extending Large Language Models (LLMs) to non-English languages, specifically those using non-Roman scripts. We propose an approach that utilizes the romanized form of text as an interface for LLMs, hypothesizing that its frequent informal use and shared tokens with English enhance cross-lingual alignment. Our approach involve the continual pretraining of a English LLM like Llama 2 on romanized text of non-English, non-Roman script languages, followed by instruction tuning on romanized data. The results indicate that romanized text not only reduces token fertility by 2x-4x but also matches if not outperforms native script representation across various NLU, NLG and MT tasks. Moreover, the embeddings computed on romanized text exhibit closer alignment with their English translations than those from the native script. Our approach presents a promising direction for leveraging the power of English LLMs in languages traditionally underrepresented in NLP research.

pdf bib
Leveraging Linguistically Enhanced Embeddings for Open Information Extraction
Fauzan Nayeem Farooqui | Thanmay Jayakumar | Pulkit Mathur | Mansi A. Radke
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Open Information Extraction (OIE) is a structure prediction (SP) task in Natural Language Processing (NLP) that aims to extract structured n-ary tuples - usually subject-relation-object triples - from free text. The word embeddings in the input text can be enhanced with linguistic features, usually Part-of-Speech (PoS) and Syntactic Dependency Parse (SynDP) labels. However, past enhancement techniques cannot leverage the power of pre-trained language models (PLMs), which themselves have been hardly used for OIE. To bridge this gap, we are the first to leverage linguistic features with a Seq2Seq PLM for OIE. We do so by introducing two methods - Weighted Addition and Linearized Concatenation. Our work gives any neural OIE architecture the key performance boost from both PLMs and linguistic features in one go. In our settings, this shows wide improvements of up to 24.9%, 27.3% and 14.9% on Precision, Recall and F1 scores respectively over the baseline. Beyond this, we address other important challenges in the field: to reduce compute overheads with the features, we are the first ones to exploit Semantic Dependency Parse (SemDP) tags; to address flaws in current datasets, we create a clean synthetic dataset; finally, we contribute the first known study of OIE behaviour in SP models.

2023

pdf bib
Large Language Models are legal but they are not: Making the case for a powerful LegalLLM
Thanmay Jayakumar | Fauzan Farooqui | Luqman Farooqui
Proceedings of the Natural Legal Language Processing Workshop 2023

Realizing the recent advances from Natural Language Processing (NLP) to the legal sector poses challenging problems such as extremely long sequence lengths, specialized vocabulary that is usually only understood by legal professionals, and high amounts of data imbalance. The recent surge of Large Language Models (LLM) has begun to provide new opportunities to apply NLP in the legal domain due to their ability to handle lengthy, complex sequences. Moreover, the emergence of domain-specific LLMs has displayed extremely promising results on various tasks. In this study, we aim to quantify how general LLMs perform in comparison to legal-domain models (be it an LLM or otherwise). Specifically, we compare the zero-shot performance of three general-purpose LLMs (ChatGPT-3.5, LLaMA-70b and Falcon-180b) on the LEDGAR subset of the LexGLUE benchmark for contract provision classification. Although the LLMs were not explicitly trained on legal data, we observe that they are still able to classify the theme correctly in most cases. However, we find that their mic-F1/mac-F1 performance are upto 19.2/26.8% lesser than smaller models fine-tuned on the legal domain, thus underscoring the need for more powerful legal-domain LLMs.