2024
pdf
bib
abs
TableLlama: Towards Open Large Generalist Models for Tables
Tianshu Zhang
|
Xiang Yue
|
Yifei Li
|
Huan Sun
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Semi-structured tables are ubiquitous. There has been a variety of tasks that aim to automatically interpret, augment, and query tables. Current methods often require pretraining on tables or special model architecture design, are restricted to specific table types, or have simplifying assumptions about tables and tasks. This paper makes the first step towards developing open-source large language models (LLMs) as generalists for a diversity of table-based tasks. Towards that end, we construct TableInstruct, a new dataset with a variety of realistic tables and tasks, for instruction tuning and evaluating LLMs. We further develop the first open-source generalist model for tables, TableLlama, by fine-tuning Llama 2 (7B) with LongLoRA to address the long context challenge. We experiment under both in-domain setting and out-of-domain setting. On 7 out of 8 in-domain tasks, TableLlama achieves comparable or better performance than the SOTA for each task, despite the latter often has task-specific design. On 6 out-of-domain datasets, it achieves 5-44 absolute point gains compared with the base model, showing that training on TableInstruct enhances the model’s generalizability. We open-source our dataset and trained model to boost future work on developing open generalist models for tables.
2023
pdf
bib
abs
Federated Learning for Semantic Parsing: Task Formulation, Evaluation Setup, New Algorithms
Tianshu Zhang
|
Changchang Liu
|
Wei-Han Lee
|
Yu Su
|
Huan Sun
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
This paper studies a new task of federated learning (FL) for semantic parsing, where multiple clients collaboratively train one global model without sharing their semantic parsing data. By leveraging data from multiple clients, the FL paradigm can be especially beneficial for clients that have little training data to develop a data-hungry neural semantic parser on their own. We propose an evaluation setup to study this task, where we re-purpose widely-used single-domain text-to-SQL datasets as clients to form a realistic heterogeneous FL setting and collaboratively train a global model. As standard FL algorithms suffer from the high client heterogeneity in our realistic setup, we further propose a novel LOss Reduction Adjusted Re-weighting (Lorar) mechanism, which adjusts each client’s contribution to the global model update based on its training loss reduction during each round. Our intuition is that the larger the loss reduction, the further away the current global model is from the client’s local optimum, and the larger weight the client should get. By applying Lorar to three widely adopted FL algorithms (FedAvg, FedOPT and FedProx), we observe that their performance can be improved substantially on average (4%-20% absolute gain under MacroAvg) and that clients with smaller datasets enjoy larger performance gains. In addition, the global model converges faster for almost all the clients.
pdf
bib
abs
Exploring Chain of Thought Style Prompting for Text-to-SQL
Chang-Yu Tai
|
Ziru Chen
|
Tianshu Zhang
|
Xiang Deng
|
Huan Sun
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
In-context learning with large language models (LLMs) has recently caught increasing attention due to its superior few-shot performance on various tasks. However, its performance on text-to-SQL parsing still has much room for improvement. In this paper, we hypothesize that a crucial aspect of LLMs to improve for text-to-SQL parsing is their multi-step reasoning ability. Thus, we systematically study how to enhance LLMs’ reasoning ability through chain of thought (CoT) style prompting, including the original chain-of-thought prompting and least-to-most prompting. Our experiments demonstrate that iterative prompting as in least-to-most prompting may be unnecessary for text-to-SQL parsing, and using detailed reasoning steps tends to have more error propagation issues. Based on these findings, we propose a new CoT-style prompting method for text-to-SQL parsing. It brings 5.2 and 6.5 point absolute gains on the Spider development set and the Spider Realistic set, respectively, compared to the standard prompting method without reasoning steps; 2.4 and 1.5 point absolute gains, compared to the least-to-most prompting method.
pdf
bib
abs
Roll Up Your Sleeves: Working with a Collaborative and Engaging Task-Oriented Dialogue System
Lingbo Mo
|
Shijie Chen
|
Ziru Chen
|
Xiang Deng
|
Ashley Lewis
|
Sunit Singh
|
Samuel Stevens
|
Chang-You Tai
|
Zhen Wang
|
Xiang Yue
|
Tianshu Zhang
|
Yu Su
|
Huan Sun
Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue
We introduce TacoBot, a user-centered task-oriented digital assistant designed to guide users through complex real-world tasks with multiple steps. Covering a wide range of cooking and how-to tasks, we aim to deliver a collaborative and engaging dialogue experience. Equipped with language understanding, dialogue management, and response generation components supported by a robust search engine, TacoBot ensures efficient task assistance. To enhance the dialogue experience, we explore a series of data augmentation strategies using LLMs to train advanced neural models continuously. TacoBot builds upon our successful participation in the inaugural Alexa Prize TaskBot Challenge, where our team secured third place among ten competing teams. We offer TacoBot as an open-source framework that serves as a practical example for deploying task-oriented dialogue systems.