2024
pdf
bib
abs
Predicting Client Emotions and Therapist Interventions in Psychotherapy Dialogues
Tobias Mayer
|
Neha Warikoo
|
Amir Eliassaf
|
Dana Atzil-Slonim
|
Iryna Gurevych
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Natural Language Processing (NLP) can advance psychotherapy research by scaling up therapy dialogue analysis as well as by allowing researchers to examine client-therapist interactions in detail. Previous studies have mainly either explored the clients’ behavior or the therapists’ intervention in dialogues. Yet, modelling conversations from both dialogue participants is crucial to understanding the therapeutic interaction. This study explores speaker contribution-based dialogue acts at the utterance-level; i.e, the therapist - Intervention Prediction (IP) and the client - Emotion Recognition (ER) in psychotherapy using a pan-theoretical schema. We perform experiments with fine-tuned language models and light-weight adapter solutions on a Hebrew dataset. We deploy the results from our ER model predictions in investigating the coherence between client self-reports on emotion and the utterance-level emotions. Our best adapters achieved on-par performance with fully fine-tuned models, at 0.64 and 0.66 micro F1 for IP and ER, respectively. In addition, our analysis identifies ambiguities within categorical clinical coding, which can be used to fine-tune the coding schema. Finally, our results indicate a positive correlation between client self-reports and utterance-level emotions.
2021
pdf
bib
abs
Extraction d’arguments basée sur les transformateurs pour des applications dans le domaine de la santé (Transformer-based Argument Mining for Healthcare Applications)
Tobias Mayer
|
Elena Cabrio
|
Serena Villata
Actes de la 28e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale
Nous présentons des résumés en français et en anglais de l’article (Mayer et al., 2020) présenté à la conférence 24th European Conference on Artificial Intelligence (ECAI-2020) en 2020.
2018
pdf
bib
abs
Evidence Type Classification in Randomized Controlled Trials
Tobias Mayer
|
Elena Cabrio
|
Serena Villata
Proceedings of the 5th Workshop on Argument Mining
Randomized Controlled Trials (RCT) are a common type of experimental studies in the medical domain for evidence-based decision making. The ability to automatically extract the arguments proposed therein can be of valuable support for clinicians and practitioners in their daily evidence-based decision making activities. Given the peculiarity of the medical domain and the required level of detail, standard approaches to argument component detection in argument(ation) mining are not fine-grained enough to support such activities. In this paper, we introduce a new sub-task of the argument component identification task: evidence type classification. To address it, we propose a supervised approach and we test it on a set of RCT abstracts on different medical topics.