Tu-Anh Tran


2024

pdf bib
Integrating Headedness Information into an Auto-generated Multilingual CCGbank for Improved Semantic Interpretation
Tu-Anh Tran | Yusuke Miyao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Previously, we introduced a method to generate a multilingual Combinatory Categorial Grammar (CCG) treebank by converting from the Universal Dependencies (UD). However, the method only produces bare CCG derivations without any accompanying semantic representations, which makes it difficult to obtain satisfactory analyses for constructions that involve non-local dependencies, such as control/raising or relative clauses, and limits the general applicability of the treebank. In this work, we present an algorithm that adds semantic representations to existing CCG derivations, in the form of predicate-argument structures. Through hand-crafted rules, we enhance each CCG category with headedness information, with which both local and non-local dependencies can be properly projected. This information is extracted from various sources, including UD, Enhanced UD, and proposition banks. Evaluation of our projected dependencies on the English PropBank and the Universal PropBank 2.0 shows that they can capture most of the semantic dependencies in the target corpora. Further error analysis measures the effectiveness of our algorithm for each language tested, and reveals several issues with the previous method and source data.

2022

pdf bib
Development of a Multilingual CCG Treebank via Universal Dependencies Conversion
Tu-Anh Tran | Yusuke Miyao
Proceedings of the Thirteenth Language Resources and Evaluation Conference

This paper introduces an algorithm to convert Universal Dependencies (UD) treebanks to Combinatory Categorial Grammar (CCG) treebanks. As CCG encodes almost all grammatical information into the lexicon, obtaining a high-quality CCG derivation from a dependency tree is a challenging task. Our algorithm relies on hand-crafted rules to assign categories to constituents, and a non-statistical parser to derive full CCG parses given the assigned categories. To evaluate our converted treebanks, we perform lexical, sentential, and syntactic rule coverage analysis, as well as CCG parsing experiments. Finally, we discuss how our method handles complex constructions, and propose possible future extensions.