Vani Kanjirangat


2024

pdf bib
NLP_DI at NADI 2024 shared task: Multi-label Arabic Dialect Classifications with an Unsupervised Cross-Encoder
Vani Kanjirangat | Tanja Samardzic | Ljiljana Dolamic | Fabio Rinaldi
Proceedings of The Second Arabic Natural Language Processing Conference

We report the approaches submitted to the NADI 2024 Subtask 1: Multi-label country-level Dialect Identification (MLDID). The core part was to adapt the information from multi-class data for a multi-label dialect classification task. We experimented with supervised and unsupervised strategies to tackle the task in this challenging setting. Under the supervised setup, we used the model trained using NADI 2023 data and devised approaches to convert the multi-class predictions to multi-label by using information from the confusion matrix or using calibrated probabilities. Under unsupervised settings, we used the Arabic-based sentence encoders and multilingual cross-encoders to retrieve similar samples from the training set, considering each test input as a query. The associated labels are then assigned to the input query. We also tried different variations, such as co-occurring dialects derived from the provided development set. We obtained the best validation performance of 48.5% F-score using one of the variations with an unsupervised approach and the same approach yielded the best test result of 43.27% (Ranked 2).

pdf bib
Dialect Identifications with Large Language Models
Vani Kanjirangat | Ljiljana Dolamic | Fabio Rinaldi
Proceedings of the 9th edition of the Swiss Text Analytics Conference

2023

pdf bib
Optimizing the Size of Subword Vocabularies in Dialect Classification
Vani Kanjirangat | Tanja Samardžić | Ljiljana Dolamic | Fabio Rinaldi
Tenth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2023)

Pre-trained models usually come with a pre-defined tokenization and little flexibility as to what subword tokens can be used in downstream tasks. This problem concerns especially multilingual NLP and low-resource languages, which are typically processed using cross-lingual transfer. In this paper, we aim to find out if the right granularity of tokenization is helpful for a text classification task, namely dialect classification. Aiming at generalizations beyond the studied cases, we look for the optimal granularity in four dialect datasets, two with relatively consistent writing (one Arabic and one Indo-Aryan set) and two with considerably inconsistent writing (one Arabic and one Swiss German set). To gain more control over subword tokenization and ensure direct comparability in the experimental settings, we train a CNN classifier from scratch comparing two subword tokenization methods (Unigram model and BPE). For reference, we compare the results obtained in our analysis to the state of the art achieved by fine-tuning pre-trained models. We show that models trained from scratch with an optimal tokenization level perform better than fine-tuned classifiers in the case of highly inconsistent writing. In the case of relatively consistent writing, fine-tuned models remain better regardless of the tokenization level.

2022

pdf bib
Early Guessing for Dialect Identification
Vani Kanjirangat | Tanja Samardzic | Fabio Rinaldi | Ljiljana Dolamic
Findings of the Association for Computational Linguistics: EMNLP 2022

This paper deals with the problem of incre-mental dialect identification. Our goal is toreliably determine the dialect before the fullutterance is given as input. The major partof the previous research on dialect identification has been model-centric, focusing on performance. We address a new question: How much input is needed to identify a dialect? Ourapproach is a data-centric analysis that resultsin general criteria for finding the shortest inputneeded to make a plausible guess. Workingwith three sets of language dialects (Swiss German, Indo-Aryan and Arabic languages), weshow that it is possible to generalize across dialects and datasets with two input shorteningcriteria: model confidence and minimal inputlength (adjusted for the input type). The sourcecode for experimental analysis can be found atGithub.

pdf bib
NLP DI at NADI Shared Task Subtask-1: Sub-word Level Convolutional Neural Models and Pre-trained Binary Classifiers for Dialect Identification
Vani Kanjirangat | Tanja Samardzic | Ljiljana Dolamic | Fabio Rinaldi
Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)

In this paper, we describe our systems submitted to the NADI Subtask 1: country-wise dialect classifications. We designed two types of solutions. The first type is convolutional neural network CNN) classifiers trained on subword segments of optimized lengths. The second type is fine-tuned classifiers with BERT-based language specific pre-trained models. To deal with the missing dialects in one of the test sets, we experimented with binary classifiers, analyzing the predicted probability distribution patterns and comparing them with the development set patterns. The better performing approach on the development set was fine-tuning language specific pre-trained model (best F-score 26.59%). On the test set, on the other hand, we obtained the best performance with the CNN model trained on subword tokens obtained with a Unigram model (the best F-score 26.12%). Re-training models on samples of training data simulating missing dialects gave the maximum performance on the test set version with a number of dialects lesser than the training set (F-score 16.44%)

2020

pdf bib
SST-BERT at SemEval-2020 Task 1: Semantic Shift Tracing by Clustering in BERT-based Embedding Spaces
Vani Kanjirangat | Sandra Mitrovic | Alessandro Antonucci | Fabio Rinaldi
Proceedings of the Fourteenth Workshop on Semantic Evaluation

Lexical semantic change detection (also known as semantic shift tracing) is a task of identifying words that have changed their meaning over time. Unsupervised semantic shift tracing, focal point of SemEval2020, is particularly challenging. Given the unsupervised setup, in this work, we propose to identify clusters among different occurrences of each target word, considering these as representatives of different word meanings. As such, disagreements in obtained clusters naturally allow to quantify the level of semantic shift per each target word in four target languages. To leverage this idea, clustering is performed on contextualized (BERT-based) embeddings of word occurrences. The obtained results show that our approach performs well both measured separately (per language) and overall, where we surpass all provided SemEval baselines.