Victor Milewski
2022
Finding Structural Knowledge in Multimodal-BERT
Victor Milewski
|
Miryam de Lhoneux
|
Marie-Francine Moens
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In this work, we investigate the knowledge learned in the embeddings of multimodal-BERT models. More specifically, we probe their capabilities of storing the grammatical structure of linguistic data and the structure learned over objects in visual data. To reach that goal, we first make the inherent structure of language and visuals explicit by a dependency parse of the sentences that describe the image and by the dependencies between the object regions in the image, respectively. We call this explicit visual structure the scene tree, that is based on the dependency tree of the language description. Extensive probing experiments show that the multimodal-BERT models do not encode these scene trees.
2020
Are Scene Graphs Good Enough to Improve Image Captioning?
Victor Milewski
|
Marie-Francine Moens
|
Iacer Calixto
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing
Many top-performing image captioning models rely solely on object features computed with an object detection model to generate image descriptions. However, recent studies propose to directly use scene graphs to introduce information about object relations into captioning, hoping to better describe interactions between objects. In this work, we thoroughly investigate the use of scene graphs in image captioning. We empirically study whether using additional scene graph encoders can lead to better image descriptions and propose a conditional graph attention network (C-GAT), where the image captioning decoder state is used to condition the graph updates. Finally, we determine to what extent noise in the predicted scene graphs influence caption quality. Overall, we find no significant difference between models that use scene graph features and models that only use object detection features across different captioning metrics, which suggests that existing scene graph generation models are still too noisy to be useful in image captioning. Moreover, although the quality of predicted scene graphs is very low in general, when using high quality scene graphs we obtain gains of up to 3.3 CIDEr compared to a strong Bottom-Up Top-Down baseline.