Viet Dao
2024
Lifelong Event Detection via Optimal Transport
Viet Dao
|
Van-Cuong Pham
|
Quyen Tran
|
Thanh-Thien Le
|
Linh Van Ngo
|
Thien Huu Nguyen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Continual Event Detection (CED) poses a formidable challenge due to the catastrophic forgetting phenomenon, where learning new tasks (with new coming event types) hampers performance on previous ones. In this paper, we introduce a novel approach, Lifelong Event Detection via Optimal Transport (**LEDOT**), that leverages optimal transport principles to align the optimization of our classification module with the intrinsic nature of each class, as defined by their pre-trained language modeling. Our method integrates replay sets, prototype latent representations, and an innovative Optimal Transport component. Extensive experiments on MAVEN and ACE datasets demonstrate LEDOT’s superior performance, consistently outperforming state-of-the-art baselines. The results underscore LEDOT as a pioneering solution in continual event detection, offering a more effective and nuanced approach to addressing catastrophic forgetting in evolving environments.
SharpSeq: Empowering Continual Event Detection through Sharpness-Aware Sequential-task Learning
Thanh-Thien Le
|
Viet Dao
|
Linh Nguyen
|
Thi-Nhung Nguyen
|
Linh Ngo
|
Thien Nguyen
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Continual event detection is a cornerstone in uncovering valuable patterns in many dynamic practical applications, where novel events emerge daily. Existing state-of-the-art approaches with replay buffers still suffer from catastrophic forgetting, partially due to overly simplistic objective aggregation. This oversight disregards complex trade-offs and leads to sub-optimal gradient updates, resulting in performance deterioration across objectives. While there are successful, widely cited multi-objective optimization frameworks for multi-task learning, they lack mechanisms to address data imbalance and evaluate whether a Pareto-optimal solution can effectively mitigate catastrophic forgetting, rendering them unsuitable for direct application to continual learning. To address these challenges, we propose **SharpSeq**, a novel continual learning paradigm leveraging sharpness-aware minimization combined with a generative model to balance training data distribution. Through extensive experiments on multiple real-world datasets, we demonstrate the superior performance of SharpSeq in continual event detection, proving the importance of our approach in mitigating catastrophic forgetting in continual event detection.
Search
Fix data
Co-authors
- Thanh-Thien Le 2
- Linh Van Ngo 1
- Linh Ngo 1
- Thien Huu Nguyen 1
- Linh Nguyen 1
- show all...