The emergence of Multi-task learning (MTL)models in recent years has helped push thestate of the art in Natural Language Un-derstanding (NLU). We strongly believe thatmany NLU problems in Arabic are especiallypoised to reap the benefits of such models. Tothis end we propose the Arabic Language Un-derstanding Evaluation Benchmark (ALUE),based on 8 carefully selected and previouslypublished tasks. For five of these, we providenew privately held evaluation datasets to en-sure the fairness and validity of our benchmark. We also provide a diagnostic dataset to helpresearchers probe the inner workings of theirmodels.Our initial experiments show thatMTL models outperform their singly trainedcounterparts on most tasks. But in order to en-tice participation from the wider community,we stick to publishing singly trained baselinesonly. Nonetheless, our analysis reveals thatthere is plenty of room for improvement inArabic NLU. We hope that ALUE will playa part in helping our community realize someof these improvements. Interested researchersare invited to submit their results to our online,and publicly accessible leaderboard.
Arabic dialect identification is a complex problem for a number of inherent properties of the language itself. In this paper, we present the experiments conducted, and the models developed by our competing team, Mawdoo3 AI, along the way to achieving our winning solution to subtask 1 of the Nuanced Arabic Dialect Identification (NADI) shared task. The dialect identification subtask provides 21,000 country-level labeled tweets covering all 21 Arab countries. An unlabeled corpus of 10M tweets from the same domain is also presented by the competition organizers for optional use. Our winning solution itself came in the form of an ensemble of different training iterations of our pre-trained BERT model, which achieved a micro-averaged F1-score of 26.78% on the subtask at hand. We publicly release the pre-trained language model component of our winning solution under the name of Multi-dialect-Arabic-BERT model, for any interested researcher out there.
Arabic dialect identification is an inherently complex problem, as Arabic dialect taxonomy is convoluted and aims to dissect a continuous space rather than a discrete one. In this work, we present machine and deep learning approaches to predict 21 fine-grained dialects form a set of given tweets per user. We adopted numerous feature extraction methods most of which showed improvement in the final model, such as word embedding, Tf-idf, and other tweet features. Our results show that a simple LinearSVC can outperform any complex deep learning model given a set of curated features. With a relatively complex user voting mechanism, we were able to achieve a Macro-Averaged F1-score of 71.84% on MADAR shared subtask-2. Our best submitted model ranked second out of all participating teams.