Wenbo Liu


2025

pdf bib
PDC & DM-SFT: A Road for LLM SQL Bug-Fix Enhancing
Yiwen Duan | Yonghong Yu | Xiaoming Zhao | Yichang Wu | Wenbo Liu
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track

Code Large Language Models (Code LLMs), such as Code llama and DeepSeek-Coder, have demonstrated exceptional performance in the code generation tasks. However, most existing models focus on the abilities of generating correct code, but often struggle with bug repair. We introduce a suit of methods to enhance LLM’s SQL bug-fixing abilities. The methods are mainly consisted of two parts: A Progressive Dataset Construction (PDC) from scratch and Dynamic Mask Supervised Fine-tuning (DM-SFT). PDC proposes two data expansion methods from the perspectives of breadth first and depth first respectively. DM-SFT introduces an efficient bug-fixing supervised learning approach, which effectively reduce the total training steps and mitigate the “disorientation” in SQL code bug-fixing training. In our evaluation, the code LLM models trained with two methods have exceeds all current best performing model which size is much larger.

2023

pdf bib
Double-Branch Multi-Attention based Graph Neural Network for Knowledge Graph Completion
Hongcai Xu | Junpeng Bao | Wenbo Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Graph neural networks (GNNs), which effectively use topological structures in the knowledge graphs (KG) to embed entities and relations in low-dimensional spaces, have shown great power in knowledge graph completion (KGC). KG has abundant global and local structural information, however, many GNN-based KGC models cannot capture these two types of information about the graph structure by designing complex aggregation schemes, and are not designed well to learn representations of seen entities with sparse neighborhoods in isolated subgraphs. In this paper, we find that a simple attention-based method can outperform a general GNN-based approach for KGC. We then propose a double-branch multi-attention based graph neural network (MA-GNN) to learn more expressive entity representations which contain rich global-local structural information. Specifically, we first explore the graph attention network-based local aggregator to learn entity representations. Furthermore, we propose a snowball local attention mechanism by leveraging the semantic similarity between two-hop neighbors to enrich the entity embedding. Finally, we use Transformer-based self-attention to learn long-range dependence between entities to obtain richer representations with the global graph structure and entity features. Experimental results on five benchmark datasets show that MA-GNN achieves significant improvements over strong baselines for inductive KGC.