Xiaofeng Liu
2024
Light-weight Fine-tuning Method for Defending Adversarial Noise in Pre-trained Medical Vision-Language Models
Xu Han
|
Linghao Jin
|
Xuezhe Ma
|
Xiaofeng Liu
Findings of the Association for Computational Linguistics: EMNLP 2024
Fine-tuning pre-trained Vision-Language Models (VLMs) has shown remarkable capabilities in medical image and textual depiction synergy. Nevertheless, many pre-training datasets are restricted by patient privacy concerns, potentially containing noise that can adversely affect downstream performance. Moreover, the growing reliance on multi-modal generation exacerbates this issue because of its susceptibility to adversarial attacks. To investigate how VLMs trained on adversarial noisy data perform on downstream medical tasks, we first craft noisy upstream datasets using multi-modal adversarial attacks. Through our comprehensive analysis, we unveil that moderate noise enhances model robustness and transferability, but increasing noise levels negatively impact downstream task performance. To mitigate this issue, we propose rectify adversarial noise (RAN) framework, a recipe designed to effectively defend adversarial attacks and rectify the influence of upstream noise during fine-tuning.
2021
BACO: A Background Knowledge- and Content-Based Framework for Citing Sentence Generation
Yubin Ge
|
Ly Dinh
|
Xiaofeng Liu
|
Jinsong Su
|
Ziyao Lu
|
Ante Wang
|
Jana Diesner
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
In this paper, we focus on the problem of citing sentence generation, which entails generating a short text to capture the salient information in a cited paper and the connection between the citing and cited paper. We present BACO, a BAckground knowledge- and COntent-based framework for citing sentence generation, which considers two types of information: (1) background knowledge by leveraging structural information from a citation network; and (2) content, which represents in-depth information about what to cite and why to cite. First, a citation network is encoded to provide background knowledge. Second, we apply salience estimation to identify what to cite by estimating the importance of sentences in the cited paper. During the decoding stage, both types of information are combined to facilitate the text generation, and then we conduct a joint training for the generator and citation function classification to make the model aware of why to cite. Our experimental results show that our framework outperforms comparative baselines.