Xiaomeng Ma


2023

pdf bib
ToMChallenges: A Principle-Guided Dataset and Diverse Evaluation Tasks for Exploring Theory of Mind
Xiaomeng Ma | Lingyu Gao | Qihui Xu
Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL)

Theory of Mind (ToM), the capacity to comprehend the mental states of distinct individuals, is essential for numerous practical applications. With the development of large language models (LLMs), there is a heated debate about whether they are able to perform ToM tasks. Previous studies have used different tasks and prompts to test the ToM on LLMs and the results are inconsistent: some studies asserted these models are capable of exhibiting ToM, while others suggest the opposite. In this study, We present ToMChallenges, a dataset for comprehensively evaluating the Theory of Mind based on Sally-Anne and Smarties tests with a diverse set of tasks. In addition, we also propose an auto-grader to streamline the answer evaluation process. We tested three models: davinci, turbo, and gpt-4. Our evaluation results and error analyses show that LLMs have inconsistent behaviors across prompts and tasks. Performing the ToM tasks robustly remains a challenge for the LLMs. In addition, our paper wants to raise awareness in evaluating the ToM in LLMs and we want to invite more discussion on how to design the prompts and tasks for ToM tasks that can better access the LLMs’ ability.

pdf bib
Evaluating Transformer Models and Human Behaviors on Chinese Character Naming
Xiaomeng Ma | Lingyu Gao
Transactions of the Association for Computational Linguistics, Volume 11

Neural network models have been proposed to explain the grapheme-phoneme mapping process in humans for many alphabet languages. These models not only successfully learned the correspondence of the letter strings and their pronunciation, but also captured human behavior in nonce word naming tasks. How would the neural models perform for a non-alphabet language (e.g., Chinese) unknown character task? How well would the model capture human behavior? In this study, we first collect human speakers’ answers on unknown Character naming tasks and then evaluate a set of transformer models by comparing their performance with human behaviors on an unknown Chinese character naming task. We found that the models and humans behaved very similarly, that they had similar accuracy distribution for each character, and had a substantial overlap in answers. In addition, the models’ answers are highly correlated with humans’ answers. These results suggested that the transformer models can capture humans’ character naming behavior well.1

2022

pdf bib
How do we get there? Evaluating transformer neural networks as cognitive models for English past tense inflection
Xiaomeng Ma | Lingyu Gao
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

There is an ongoing debate of whether neural network can grasp the quasi-regularities in languages like humans. In a typical quasi-regularity task, English past tense inflections, the neural network model has long been criticized that it learns only to generalize the most frequent pattern, but not the regular pattern, thus can not learn the abstract categories of regular and irregular and is dissimilar to human performance. In this work, we train a set of transformer models with different settings to examine their behavior on this task. The models achieved high accuracy on unseen regular verbs and some accuracy on unseen irregular verbs. The models’ performance on the regulars are heavily affected by type frequency and ratio but not token frequency and ratio, and vice versa for the irregulars. The different behaviors on the regulars and irregulars suggest that the models have some degree of symbolic learning on the regularity of the verbs. In addition, the models are weakly correlated with human behavior on nonce verbs. Although the transformer model exhibits some level of learning on the abstract category of verb regularity, its performance does not fit human data well suggesting that it might not be a good cognitive model.

2020

pdf bib
Learning Pronoun Case from Distributional Cues: Flexible Frames for Case Acquisition
Xiaomeng Ma | Martin Chodorow | Virginia Valian
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics

Case is an abstract grammatical feature that indicates argument relationship in a sentence. In English, cases are expressed on pronouns, as nominative case (e.g. I, he), accusative case (e.g. me, him) and genitive case (e.g. my, his). Children correctly use cased pronouns at a very young age. How do they acquire abstract case in the first place, when different cases are not associated with different meanings? This paper proposes that the distributional patterns in parents’ input could be used to distinguish grammatical cases in English.