Xiaotian Ye
2025
KELE: Residual Knowledge Erasure for Enhanced Multi-hop Reasoning in Knowledge Editing
Mengqi Zhang
|
Bowen Fang
|
Qiang Liu
|
Xiaotian Ye
|
Shu Wu
|
Pengjie Ren
|
Zhumin Chen
|
Liang Wang
Findings of the Association for Computational Linguistics: EMNLP 2025
Large language models (LLMs) face challenges with internal knowledge inaccuracies and outdated information. Knowledge editing has emerged as a pivotal approach to mitigate these issues. Although current knowledge editing techniques exhibit promising performance in single-hop reasoning tasks, they show limitations when applied to multi-hop reasoning. Drawing on cognitive neuroscience and the operational mechanisms of LLMs, we hypothesize that the residual single-hop knowledge after editing causes edited models to revert to their original answers when processing multihop questions, thereby undermining their performance in multi-hop reasoning tasks. To validate this hypothesis, we conduct a series of experiments that empirically confirm our assumptions. Building on the validated hypothesis, we propose a novel knowledge editing method that incorporates a Knowledge Erasure mechanism for Large language model Editing (KELE). Specifically, we design an erasure function for residual knowledge and an injection function for new knowledge. Through joint optimization, we derive the optimal recall vector, which is subsequently utilized within a rank-one editing framework to update the parameters of targeted model layers. Extensive experiments on GPT-J (6B) and LLaMA-2 (7B) demonstrate that KELE substantially enhances the multi-hop reasoning capability of edited LLMs.
UIPE: Enhancing LLM Unlearning by Removing Knowledge Related to Forgetting Targets
Wenyu Wang
|
Mengqi Zhang
|
Xiaotian Ye
|
Zhaochun Ren
|
Pengjie Ren
|
Zhumin Chen
Findings of the Association for Computational Linguistics: EMNLP 2025
Large Language Models (LLMs) inevitably acquire harmful information during training on massive datasets. LLM unlearning aims to eliminate the influence of such harmful information while maintaining the model’s overall performance. Existing unlearning methods, represented by gradient ascent-based approaches, primarily focus on forgetting target data while overlooking the crucial impact of logically related knowledge on the effectiveness of unlearning. In this paper, through both theoretical and experimental analyses, we first demonstrate that a key reason for the suboptimal unlearning performance is that models can reconstruct the target content through reasoning with logically related knowledge. To address this issue, we propose Unlearning Improvement via Parameter Extrapolation (UIPE), a method that removes knowledge highly correlated with the forgetting targets. Experimental results show that UIPE significantly enhances the performance of GA-based method and its variants on the TOFU and WMDP benchmarks.
2024
Knowledge Graph Enhanced Large Language Model Editing
Mengqi Zhang
|
Xiaotian Ye
|
Qiang Liu
|
Pengjie Ren
|
Shu Wu
|
Zhumin Chen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs) are pivotal in advancing natural language processing (NLP) tasks, yet their efficacy is hampered by inaccuracies and outdated knowledge. Model editing emerges as a promising solution to address these challenges. However, existing editing methods struggle to track and incorporate changes in knowledge associated with edits, which limits the generalization ability of post-edit LLMs in processing edited knowledge. To tackle these problems, we propose a novel model editing method that leverages knowledge graphs for enhancing LLM editing, namely GLAME. Specifically, we first utilize a knowledge graph augmentation module to uncover associated knowledge that has changed due to editing, obtaining its internal representations within LLMs. This approach allows knowledge alterations within LLMs to be reflected through an external graph structure. Subsequently, we design a graph-based knowledge edit module to integrate structured knowledge into the model editing. This ensures that the updated parameters reflect not only the modifications of the edited knowledge but also the changes in other associated knowledge resulting from the editing process. Comprehensive experiments conducted on GPT-J and GPT-2 XL demonstrate that GLAME significantly improves the generalization capabilities of post-edit LLMs in employing edited knowledge.