Xing David Wang
2022
BEEDS: Large-Scale Biomedical Event Extraction using Distant Supervision and Question Answering
Xing David Wang
|
Ulf Leser
|
Leon Weber
Proceedings of the 21st Workshop on Biomedical Language Processing
Automatic extraction of event structures from text is a promising way to extract important facts from the evergrowing amount of biomedical literature. We propose BEEDS, a new approach on how to mine event structures from PubMed based on a question-answering paradigm. Using a three-step pipeline comprising a document retriever, a document reader, and an entity normalizer, BEEDS is able to fully automatically extract event triples involving a query protein or gene and to store this information directly in a knowledge base. BEEDS applies a transformer-based architecture for event extraction and uses distant supervision to augment the scarce training data in event mining. In a knowledge base population setting, it outperforms a strong baseline in finding post-translational modification events consisting of enzyme-substrate-site triples while achieving competitive results in extracting binary relations consisting of protein-protein and protein-site interactions.
2020
Biomedical Event Extraction as Multi-turn Question Answering
Xing David Wang
|
Leon Weber
|
Ulf Leser
Proceedings of the 11th International Workshop on Health Text Mining and Information Analysis
Biomedical event extraction from natural text is a challenging task as it searches for complex and often nested structures describing specific relationships between multiple molecular entities, such as genes, proteins, or cellular components. It usually is implemented by a complex pipeline of individual tools to solve the different relation extraction subtasks. We present an alternative approach where the detection of relationships between entities is described uniformly as questions, which are iteratively answered by a question answering (QA) system based on the domain-specific language model SciBERT. This model outperforms two strong baselines in two biomedical event extraction corpora in a Knowledge Base Population setting, and also achieves competitive performance in BioNLP challenge evaluation settings.