Xiyao Ma
2021
Collaborative Data Relabeling for Robust and Diverse Voice Apps Recommendation in Intelligent Personal Assistants
Qian Hu
|
Thahir Mohamed
|
Wei Xiao
|
Zheng Gao
|
Xibin Gao
|
Radhika Arava
|
Xiyao Ma
|
Mohamed AbdelHady
Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI
Intelligent personal assistants (IPAs) such as Amazon Alexa, Google Assistant and Apple Siri extend their built-in capabilities by supporting voice apps developed by third-party developers. Sometimes the smart assistant is not able to successfully respond to user voice commands (aka utterances). There are many reasons including automatic speech recognition (ASR) error, natural language understanding (NLU) error, routing utterances to an irrelevant voice app or simply that the user is asking for a capability that is not supported yet. The failure to handle a voice command leads to customer frustration. In this paper, we introduce a fallback skill recommendation system to suggest a voice app to a customer for an unhandled voice command. One of the prominent challenges of developing a skill recommender system for IPAs is partial observation. To solve the partial observation problem, we propose collaborative data relabeling (CDR) method. In addition, CDR also improves the diversity of the recommended skills. We evaluate the proposed method both offline and online. The offline evaluation results show that the proposed system outperforms the baselines. The online A/B testing results show significant gain of customer experience metrics.
2020
A Batch Normalized Inference Network Keeps the KL Vanishing Away
Qile Zhu
|
Wei Bi
|
Xiaojiang Liu
|
Xiyao Ma
|
Xiaolin Li
|
Dapeng Wu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Variational Autoencoder (VAE) is widely used as a generative model to approximate a model’s posterior on latent variables by combining the amortized variational inference and deep neural networks. However, when paired with strong autoregressive decoders, VAE often converges to a degenerated local optimum known as “posterior collapse”. Previous approaches consider the Kullback–Leibler divergence (KL) individual for each datapoint. We propose to let the KL follow a distribution across the whole dataset, and analyze that it is sufficient to prevent posterior collapse by keeping the expectation of the KL’s distribution positive. Then we propose Batch Normalized-VAE (BN-VAE), a simple but effective approach to set a lower bound of the expectation by regularizing the distribution of the approximate posterior’s parameters. Without introducing any new model component or modifying the objective, our approach can avoid the posterior collapse effectively and efficiently. We further show that the proposed BN-VAE can be extended to conditional VAE (CVAE). Empirically, our approach surpasses strong autoregressive baselines on language modeling, text classification and dialogue generation, and rivals more complex approaches while keeping almost the same training time as VAE.
Search
Fix data
Co-authors
- Mohamed AbdelHady 1
- Radhika Arava 1
- Wei Bi 1
- Zheng Gao 1
- Xibin Gao 1
- show all...