Xuanliang Zhang


2024

pdf bib
Improving Demonstration Diversity by Human-Free Fusing for Text-to-SQL
Dingzirui Wang | Longxu Dou | Xuanliang Zhang | Qingfu Zhu | Wanxiang Che
Findings of the Association for Computational Linguistics: EMNLP 2024

In-context learning with large language models (LLMs) is the current mainstream method for text-to-SQL. Previous studies have explored selecting relevant demonstrations from a human-labeled demonstration pool, but these methods lack diversity and incur high labeling costs. In this work, we address measuring and enhancing the diversity of the text-to-SQL demonstration pool. First, we introduce a diversity metric and present that the diversity of the existing labeling data can be further enhanced. Motivated by these findings, we propose Fused that iteratively fuses demonstrations to create a diverse demonstration pool based on human labeling or even from scratch with LLMs, reducing labeling costs. Fused achieves an average improvement of 2.1% based on existing labeling and 5.5% from scratch on several mainstream datasets, demonstrating its effectiveness.

pdf bib
Enhancing Numerical Reasoning with the Guidance of Reliable Reasoning Processes
Dingzirui Wang | Longxu Dou | Xuanliang Zhang | Qingfu Zhu | Wanxiang Che
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Numerical reasoning is an essential ability for NLP systems to handle numeric information. Recent research indicates that fine-tuning a small-scale model to learn generating reasoning processes alongside answers can significantly enhance performance. However, current methods have the limitation that most methods generate reasoning processes with large language models (LLMs), which are “unreliable” since such processes could contain information unrelated to the answer. To address this limitation, we introduce enhancing numerical reasoning with reliable processes (Encore), which derives the reliable reasoning process by decomposing the answer formula, ensuring which fully supports the answer. Nevertheless, models could lack enough data to learn the reasoning process generation adequately, since our method generates only one single reasoning process for one formula. To overcome this difficulty, we present a series of pre-training tasks to help models learn the reasoning process generation with synthesized data. The experiments show that Encore yields improvement on all five experimental datasets with an average of 1.8%, proving the effectiveness of our method.