Yafei Jiang
2020
Extractive Financial Narrative Summarisation based on DPPs
Lei Li
|
Yafei Jiang
|
Yinan Liu
Proceedings of the 1st Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation
We participate in the FNS-Summarisation 2020 shared task to be held at FNP 2020 workshop at COLING 2020. Based on Determinantal Point Processes (DPPs), we build an extractive automatic financial summarisation system for the specific task. In this system, we first analyze the long report data to select the important narrative parts and generate an intermediate document. Next, we build the kernel Matrix L for the intermediate document, which represents the quality of its sentences. On the basis of L, we then can use the DPPs sampling algorithm to choose those sentences with high quality and diversity as the final summary sentences.
CIST@CL-SciSumm 2020, LongSumm 2020: Automatic Scientific Document Summarization
Lei Li
|
Yang Xie
|
Wei Liu
|
Yinan Liu
|
Yafei Jiang
|
Siya Qi
|
Xingyuan Li
Proceedings of the First Workshop on Scholarly Document Processing
Our system participates in two shared tasks, CL-SciSumm 2020 and LongSumm 2020. In the CL-SciSumm shared task, based on our previous work, we apply more machine learning methods on position features and content features for facet classification in Task1B. And GCN is introduced in Task2 to perform extractive summarization. In the LongSumm shared task, we integrate both the extractive and abstractive summarization ways. Three methods were tested which are T5 Fine-tuning, DPPs Sampling, and GRU-GCN/GAT.