In this work, we combine the two paradigms: Federated Learning (FL) and Continual Learning (CL) for text classification task in cloud-edge continuum. The objective of Federated Continual Learning (FCL) is to improve deep learning models over life time at each client by (relevant and efficient) knowledge transfer without sharing data. Here, we address challenges in minimizing inter-client interference while knowledge sharing due to heterogeneous tasks across clients in FCL setup. In doing so, we propose a novel framework, Federated Selective Inter-client Transfer (FedSeIT) which selectively combines model parameters of foreign clients. To further maximize knowledge transfer, we assess domain overlap and select informative tasks from the sequence of historical tasks at each foreign client while preserving privacy. Evaluating against the baselines, we show improved performance, a gain of (average) 12.4% in text classification over a sequence of tasks using five datasets from diverse domains. To the best of our knowledge, this is the first work that applies FCL to NLP.
Though word embeddings and topics are complementary representations, several past works have only used pretrained word embeddings in (neural) topic modeling to address data sparsity in short-text or small collection of documents. This work presents a novel neural topic modeling framework using multi-view embed ding spaces: (1) pretrained topic-embeddings, and (2) pretrained word-embeddings (context-insensitive from Glove and context-sensitive from BERT models) jointly from one or many sources to improve topic quality and better deal with polysemy. In doing so, we first build respective pools of pretrained topic (i.e., TopicPool) and word embeddings (i.e., WordPool). We then identify one or more relevant source domain(s) and transfer knowledge to guide meaningful learning in the sparse target domain. Within neural topic modeling, we quantify the quality of topics and document representations via generalization (perplexity), interpretability (topic coherence) and information retrieval (IR) using short-text, long-text, small and large document collections from news and medical domains. Introducing the multi-source multi-view embedding spaces, we have shown state-of-the-art neural topic modeling using 6 source (high-resource) and 5 target (low-resource) corpora.
Prior research notes that BERT’s computational cost grows quadratically with sequence length thus leading to longer training times, higher GPU memory constraints and carbon emissions. While recent work seeks to address these scalability issues at pre-training, these issues are also prominent in fine-tuning especially for long sequence tasks like document classification. Our work thus focuses on optimizing the computational cost of fine-tuning for document classification. We achieve this by complementary learning of both topic and language models in a unified framework, named TopicBERT. This significantly reduces the number of self-attention operations – a main performance bottleneck. Consequently, our model achieves a 1.4x ( 40%) speedup with 40% reduction in CO2 emission while retaining 99.9% performance over 5 datasets.
This paper presents our system details and results of participation in the RDoC Tasks of BioNLP-OST 2019. Research Domain Criteria (RDoC) construct is a multi-dimensional and broad framework to describe mental health disorders by combining knowledge from genomics to behaviour. Non-availability of RDoC labelled dataset and tedious labelling process hinders the use of RDoC framework to reach its full potential in Biomedical research community and Healthcare industry. Therefore, Task-1 aims at retrieval and ranking of PubMed abstracts relevant to a given RDoC construct and Task-2 aims at extraction of the most relevant sentence from a given PubMed abstract. We investigate (1) attention based supervised neural topic model and SVM for retrieval and ranking of PubMed abstracts and, further utilize BM25 and other relevance measures for re-ranking, (2) supervised and unsupervised sentence ranking models utilizing multi-view representations comprising of query-aware attention-based sentence representation (QAR), bag-of-words (BoW) and TF-IDF. Our best systems achieved 1st rank and scored 0.86 mAP and 0.58 macro average accuracy in Task-1 and Task-2 respectively.