Yauwai Yim


2024

pdf bib
Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction
Zheye Deng | Chunkit Chan | Weiqi Wang | Yuxi Sun | Wei Fan | Tianshi Zheng | Yauwai Yim | Yangqiu Song
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The task of condensing large chunks of textual information into concise and structured tables has gained attention recently due to the emergence of Large Language Models (LLMs) and their potential benefit for downstream tasks, such as text summarization and text mining. Previous approaches often generate tables that directly replicate information from the text, limiting their applicability in broader contexts, as text-to-table generation in real-life scenarios necessitates information extraction, reasoning, and integration. However, there is a lack of both datasets and methodologies towards this task. In this paper, we introduce LiveSum, a new benchmark dataset created for generating summary tables of competitions based on real-time commentary texts. We evaluate the performances of state-of-the-art LLMs on this task in both fine-tuning and zero-shot settings, and additionally propose a novel pipeline called T3(Text-Tuple-Table) to improve their performances. Extensive experimental results demonstrate that LLMs still struggle with this task even after fine-tuning, while our approach can offer substantial performance gains without explicit training. Further analyses demonstrate that our method exhibits strong generalization abilities, surpassing previous approaches on several other text-to-table datasets. Our codeand data can be found at https://github.com/HKUST-KnowComp/LiveSum.

pdf bib
ActPlan-1K: Benchmarking the Procedural Planning Ability of Visual Language Models in Household Activities
Ying Su | Zhan Ling | Haochen Shi | Cheng Jiayang | Yauwai Yim | Yangqiu Song
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large language models(LLMs) have been adopted to process textual task description and accomplish procedural planning in embodied AI tasks because of their powerful reasoning ability. However, there is still lack of study on how vision language models(VLMs) behave when multi-modal task inputs are considered. Counterfactual planning that evaluates the model’s reasoning ability over alternative task situations are also under exploited. In order to evaluate the planning ability of both multi-modal and counterfactual aspects, we propose ActPlan-1K. ActPlan-1K is a multi-modal planning benchmark constructed based on ChatGPT and household activity simulator iGibson2. The benchmark consists of 153 activities and 1,187 instances. Each instance describing one activity has a natural language task description and multiple environment images from the simulator. The gold plan of each instance is action sequences over the objects in provided scenes. Both the correctness and commonsense satisfaction are evaluated on typical VLMs. It turns out that current VLMs are still struggling at generating human-level procedural plans for both normal activities and counterfactual activities. We further provide automatic evaluation metrics by finetuning over BLEURT model to facilitate future research on our benchmark.

pdf bib
NegotiationToM: A Benchmark for Stress-testing Machine Theory of Mind on Negotiation Surrounding
Chunkit Chan | Cheng Jiayang | Yauwai Yim | Zheye Deng | Wei Fan | Haoran Li | Xin Liu | Hongming Zhang | Weiqi Wang | Yangqiu Song
Findings of the Association for Computational Linguistics: EMNLP 2024

Large Language Models (LLMs) have sparked substantial interest and debate concerning their potential emergence of Theory of Mind (ToM) ability. Theory of mind evaluations currently focuses on testing models using machine-generated data or game settings prone to shortcuts and spurious correlations, which lacks evaluation of machine ToM ability in real-world human interaction scenarios. This poses a pressing demand to develop new real-world scenario benchmarks. We introduce NegotiationToM, a new benchmark designed to stress-test machine ToM in real-world negotiation surrounding covered multi-dimensional mental states (i.e., desires, beliefs, and intentions). Our benchmark builds upon the Belief-Desire-Intention (BDI) agent modeling theory and conducts the necessary empirical experiments to evaluate large language models. Our findings demonstrate that NegotiationToM is challenging for state-of-the-art LLMs, as they consistently perform significantly worse than humans, even when employing the chain-of-thought (CoT) method.