Ygor Gallina


2024

pdf bib
Adaptation des modèles de langue à des domaines de spécialité par un masquage sélectif fondé sur le genre et les caractéristiques thématiques
Anas Belfathi | Ygor Gallina | Nicolas Hernandez | Laura Monceaux | Richard Dufour
Actes de la 31ème Conférence sur le Traitement Automatique des Langues Naturelles, volume 1 : articles longs et prises de position

Les modèles de langue pré-entraînés ont permis de réaliser des avancées significatives dans diverses tâches de traitement automatique du langage naturel (TALN).Une des caractéristiques des modèles reposant sur une architecture Transformeur concerne la stratégie de masquage utilisée pour capturer les relations syntaxiques et sémantiques inhérentes à une langue. Dans les architectures de type encodeur, comme par exemple BERT, les mots à masquer sont choisis aléatoirement. Cette stratégie ne tient néanmoins pas compte des caractéristiques linguistiques spécifiques à un domaine.Dans ce travail, nous proposons de réaliser un masquage sélectif des mots en fonction de leur saillance thématique dans les documents dans lesquels ils se produisent et de leur spécificité au genre de document.Les performances des modèles résultant d’un pré-entraînement continu dans le domaine juridique soulignent l’efficacité de notre approche sur le benchmark LexGLUE en langue anglaise.

2021

pdf bib
Redefining Absent Keyphrases and their Effect on Retrieval Effectiveness
Florian Boudin | Ygor Gallina
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Neural keyphrase generation models have recently attracted much interest due to their ability to output absent keyphrases, that is, keyphrases that do not appear in the source text. In this paper, we discuss the usefulness of absent keyphrases from an Information Retrieval (IR) perspective, and show that the commonly drawn distinction between present and absent keyphrases is not made explicit enough. We introduce a finer-grained categorization scheme that sheds more light on the impact of absent keyphrases on scientific document retrieval. Under this scheme, we find that only a fraction (around 20%) of the words that make up keyphrases actually serves as document expansion, but that this small fraction of words is behind much of the gains observed in retrieval effectiveness. We also discuss how the proposed scheme can offer a new angle to evaluate the output of neural keyphrase generation models.

2020

pdf bib
Keyphrase Generation for Scientific Document Retrieval
Florian Boudin | Ygor Gallina | Akiko Aizawa
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Sequence-to-sequence models have lead to significant progress in keyphrase generation, but it remains unknown whether they are reliable enough to be beneficial for document retrieval. This study provides empirical evidence that such models can significantly improve retrieval performance, and introduces a new extrinsic evaluation framework that allows for a better understanding of the limitations of keyphrase generation models. Using this framework, we point out and discuss the difficulties encountered with supplementing documents with -not present in text- keyphrases, and generalizing models across domains. Our code is available at https://github.com/boudinfl/ir-using-kg

2019

pdf bib
Etat de l’art des méthodes d’apprentissage profond pour l’extraction automatique de termes-clés (State of the art of deep learning methods for automatic keyphrase extraction )
Ygor Gallina
Actes de la Conférence sur le Traitement Automatique des Langues Naturelles (TALN) PFIA 2019. Volume III : RECITAL

Les termes-clés facilitent la recherche de documents dans de larges collections de données. Le coût d’annotation de document en termes-clés très élevé, c’est pourquoi les chercheurs s’intéressent à cette problématique. Dans cet article nous présentons un état de l’art sur l’extraction automatique de termes-clés en nous intéressant particulièrement aux modèles d’apprentissage profond. En effet, la récente publication d’un demi-million de documents annotés à permis le développement de modèles neuronaux profonds.

pdf bib
DeFT 2019 : Auto-encodeurs, Gradient Boosting et combinaisons de modèles pour l’identification automatique de mots-clés. Participation de l’équipe TALN du LS2N (Autoencoders, gradient boosting and ensemble systems for automatic keyphrase assignment : The LS2N team participation’s in the 2019 edition of DeFT)
Mérième Bouhandi | Florian Boudin | Ygor Gallina
Actes de la Conférence sur le Traitement Automatique des Langues Naturelles (TALN) PFIA 2019. Défi Fouille de Textes (atelier TALN-RECITAL)

Nous présentons dans cet article la participation de l’équipe TALN du LS2N à la tâche d’indexation de cas cliniques (tâche 1). Nous proposons deux systèmes permettant d’identifier, dans la liste de mots-clés fournie, les mots-clés correspondant à un couple cas clinique/discussion, ainsi qu’un classifieur entraîné sur la combinaison des sorties des deux systèmes. Nous présenterons dans le détail les descripteurs utilisés pour représenter les mots-clés ainsi que leur impact sur nos systèmes de classification.

pdf bib
KPTimes: A Large-Scale Dataset for Keyphrase Generation on News Documents
Ygor Gallina | Florian Boudin | Beatrice Daille
Proceedings of the 12th International Conference on Natural Language Generation

Keyphrase generation is the task of predicting a set of lexical units that conveys the main content of a source text. Existing datasets for keyphrase generation are only readily available for the scholarly domain and include non-expert annotations. In this paper we present KPTimes, a large-scale dataset of news texts paired with editor-curated keyphrases. Exploring the dataset, we show how editors tag documents, and how their annotations differ from those found in existing datasets. We also train and evaluate state-of-the-art neural keyphrase generation models on KPTimes to gain insights on how well they perform on the news domain. The dataset is available online at https://github.com/ygorg/KPTimes.