Yi Fang
2024
EAVE: Efficient Product Attribute Value Extraction via Lightweight Sparse-layer Interaction
Li Yang
|
Qifan Wang
|
Jianfeng Chi
|
Jiahao Liu
|
Jingang Wang
|
Fuli Feng
|
Zenglin Xu
|
Yi Fang
|
Lifu Huang
|
Dongfang Liu
Findings of the Association for Computational Linguistics: EMNLP 2024
Product attribute value extraction involves identifying the specific values associated with various attributes from a product profile. While existing methods often prioritize the development of effective models to improve extraction performance, there has been limited emphasis on extraction efficiency. However, in real-world scenarios, products are typically associated with multiple attributes, necessitating multiple extractions to obtain all corresponding values. In this work, we propose an Efficient product Attribute Value Extraction (EAVE) approach via lightweight sparse-layer interaction. Specifically, we employ a heavy encoder to separately encode the product context and attribute. The resulting non-interacting heavy representations of the context can be cached and reused for all attributes. Additionally, we introduce a light encoder to jointly encode the context and the attribute, facilitating lightweight interactions between them. To enrich the interaction within the lightweight encoder, we design a sparse-layer interaction module to fuse the non-interacting heavy representation into the lightweight encoder. Comprehensive evaluation on two benchmarks demonstrate that our method achieves significant efficiency gains with neutral or marginal loss in performance when the context is long and number of attributes is large. Our code is available at: https://anonymous.4open.science/r/EAVE-EA18.
Do Large Language Models Rank Fairly? An Empirical Study on the Fairness of LLMs as Rankers
Yuan Wang
|
Xuyang Wu
|
Hsin-Tai Wu
|
Zhiqiang Tao
|
Yi Fang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
The integration of Large Language Models (LLMs) in information retrieval has raised a critical reevaluation of fairness in the text-ranking models. LLMs, such as GPT models and Llama2, have shown effectiveness in natural language understanding tasks, and prior works such as RankGPT have demonstrated that the LLMs have better performance than the traditional ranking models in the ranking task. However, their fairness remains largely unexplored. This paper presents an empirical study evaluating these LLMs using the TREC Fair Ranking dataset, focusing on the representation of binary protected attributes such as gender and geographic location, which are historically underrepresented in search outcomes. Our analysis delves into how these LLMs handle queries and documents related to these attributes, aiming to uncover biases in their ranking algorithms. We assess fairness from both user and content perspectives, contributing an empirical benchmark for evaluating LLMs as the fair ranker.
Search
Co-authors
- Li Yang 1
- Qifan Wang 1
- Jianfeng Chi 1
- Jiahao Liu 1
- Jingang Wang 1
- show all...