Yi Fang


2025

pdf bib
Does RAG Introduce Unfairness in LLMs? Evaluating Fairness in Retrieval-Augmented Generation Systems
Xuyang Wu | Shuowei Li | Hsin-Tai Wu | Zhiqiang Tao | Yi Fang
Proceedings of the 31st International Conference on Computational Linguistics

Retrieval-Augmented Generation (RAG) has recently gained significant attention for its enhanced ability to integrate external knowledge sources into open-domain question answering (QA) tasks. However, it remains unclear how these models address fairness concerns, particularly with respect to sensitive attributes such as gender, geographic location, and other demographic factors. First, as language models evolve to prioritize utility, like improving exact match accuracy, fairness considerations may have been largely overlooked. Second, the complex, multi-component architecture of RAG methods poses challenges in identifying and mitigating biases, as each component is optimized for distinct objectives. In this paper, we aim to empirically evaluate fairness in several RAG methods. We propose a fairness evaluation framework tailored to RAG, using scenario-based questions and analyzing disparities across demographic attributes. Our experimental results indicate that, despite recent advances in utility-driven optimization, fairness issues persist in both the retrieval and generation stages. These findings underscore the need for targeted interventions to address fairness concerns throughout the RAG pipeline. The dataset and code used in this study are publicly available at this GitHub Repository.

pdf bib
Counterfactual Debating with Preset Stances for Hallucination Elimination of LLMs
Yi Fang | Moxin Li | Wenjie Wang | Lin Hui | Fuli Feng
Proceedings of the 31st International Conference on Computational Linguistics

Large Language Models (LLMs) excel in various natural language processing tasks but struggle with hallucination issues. Existing solutions have considered utilizing LLMs’ inherent reasoning abilities to alleviate hallucination, such as self-correction and diverse sampling methods. However, these methods often overtrust LLMs’ initial answers due to inherent biases. The key to alleviating this issue lies in overriding LLMs’ inherent biases for answer inspection. To this end, we propose a CounterFactual Multi-Agent Debate (CFMAD) framework. CFMAD presets the stances of LLMs to override their inherent biases by compelling LLMs to generate justifications for a predetermined answer’s correctness. The LLMs with different predetermined stances are engaged with a skeptical critic for counterfactual debate on the rationality of generated justifications. Finally, the debate process is evaluated by a third-party judge to determine the final answer. Extensive experiments on four datasets of three tasks demonstrate the superiority of CFMAD over existing methods.

2024

pdf bib
EAVE: Efficient Product Attribute Value Extraction via Lightweight Sparse-layer Interaction
Li Yang | Qifan Wang | Jianfeng Chi | Jiahao Liu | Jingang Wang | Fuli Feng | Zenglin Xu | Yi Fang | Lifu Huang | Dongfang Liu
Findings of the Association for Computational Linguistics: EMNLP 2024

Product attribute value extraction involves identifying the specific values associated with various attributes from a product profile. While existing methods often prioritize the development of effective models to improve extraction performance, there has been limited emphasis on extraction efficiency. However, in real-world scenarios, products are typically associated with multiple attributes, necessitating multiple extractions to obtain all corresponding values. In this work, we propose an Efficient product Attribute Value Extraction (EAVE) approach via lightweight sparse-layer interaction. Specifically, we employ a heavy encoder to separately encode the product context and attribute. The resulting non-interacting heavy representations of the context can be cached and reused for all attributes. Additionally, we introduce a light encoder to jointly encode the context and the attribute, facilitating lightweight interactions between them. To enrich the interaction within the lightweight encoder, we design a sparse-layer interaction module to fuse the non-interacting heavy representation into the lightweight encoder. Comprehensive evaluation on two benchmarks demonstrate that our method achieves significant efficiency gains with neutral or marginal loss in performance when the context is long and number of attributes is large. Our code is available at: https://anonymous.4open.science/r/EAVE-EA18.

pdf bib
Do Large Language Models Rank Fairly? An Empirical Study on the Fairness of LLMs as Rankers
Yuan Wang | Xuyang Wu | Hsin-Tai Wu | Zhiqiang Tao | Yi Fang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The integration of Large Language Models (LLMs) in information retrieval has raised a critical reevaluation of fairness in the text-ranking models. LLMs, such as GPT models and Llama2, have shown effectiveness in natural language understanding tasks, and prior works such as RankGPT have demonstrated that the LLMs have better performance than the traditional ranking models in the ranking task. However, their fairness remains largely unexplored. This paper presents an empirical study evaluating these LLMs using the TREC Fair Ranking dataset, focusing on the representation of binary protected attributes such as gender and geographic location, which are historically underrepresented in search outcomes. Our analysis delves into how these LLMs handle queries and documents related to these attributes, aiming to uncover biases in their ranking algorithms. We assess fairness from both user and content perspectives, contributing an empirical benchmark for evaluating LLMs as the fair ranker.