Yi-Reun Kim

Also published as: Yi-reun Kim


2023

pdf bib
Local Temperature Beam Search: Avoid Neural Text DeGeneration via Enhanced Calibration
Dongkyu Lee | Gyeonghun Kim | Janghoon Han | Taesuk Hong | Yi-Reun Kim | Stanley Jungkyu Choi | Nevin L. Zhang
Findings of the Association for Computational Linguistics: ACL 2023

Previous studies have constantly observed that a language model repeats itself, creating repetitions in an output sequence. To cope with the issue, stochastic decoding schemes have been the de facto approaches; the strategies add randomness in inference, hence avoiding the “self-loop”. However, the remedy comes at the cost of sacrificing output quality due to the randomness involved. In this work, we introduce a deterministic decoding scheme, local temperature beam search. This inference algorithm is an embarrassingly simple variant of beam search, yet it reduces repetition, whose level is superior to that of a sampling-based decoding algorithm, while maintaining the level of coherence as in beam search. Our idea is rooted in the concept of model calibration; we view a repetition as a casualty from overconfidence in a model. Therefore, our work mitigates the miscalibration present in the course of inference with a post-calibration approach applied in beam-specific manner. Our inference scheme is validated on text completion tasks, in which the repetition problem is seen most clearly, and is exhaustively compared with existing inference schemes.

2016

pdf bib
KSAnswer: Question-answering System of Kangwon National University and Sogang University in the 2016 BioASQ Challenge
Hyeon-gu Lee | Minkyoung Kim | Harksoo Kim | Juae Kim | Sunjae Kwon | Jungyun Seo | Yi-reun Kim | Jung-Kyu Choi
Proceedings of the Fourth BioASQ workshop