Yicheng Chen
2024
Reverse Chain: A Generic-Rule for LLMs to Master Multi-API Planning
Yinger Zhang
|
Hui Cai
|
Xierui Song
|
Yicheng Chen
|
Rui Sun
|
Jing Zheng
Findings of the Association for Computational Linguistics: NAACL 2024
While enabling large language models to implement function calling (known as APIs) can greatly enhance the performance of Large Language Models (LLMs), function calling is still a challenging task due to the complicated relations between different APIs, especially in a context-learning setting without fine-tuning. This paper introduces “Reverse Chain”, a controllable, target-driven approach designed to empower LLMs with the capability to operate external APIs only via prompts. Recognizing that most LLMs have limited tool-use capabilities, Reverse Chain limits LLMs to executing simple tasks, e.g., API Selection and Argument Completion. Furthermore, to manage a controllable multi-function calling, Reverse Chain adopts a generic rule-based on a backward reasoning process. This rule determines when to do API selection or Argument completion. To evaluate the multi-tool-use capability of LLMs, we have released a compositional multi-tool task dataset, available at https://github.com/zhangyingerjelly/reverse-chain. Extensive numerical experiments validate the remarkable proficiency of Reverse Chain in managing multiple API calls.
Are LLM-based Evaluators Confusing NLG Quality Criteria?
Xinyu Hu
|
Mingqi Gao
|
Sen Hu
|
Yang Zhang
|
Yicheng Chen
|
Teng Xu
|
Xiaojun Wan
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Some prior work has shown that LLMs perform well in NLG evaluation for different tasks. However, we discover that LLMs seem to confuse different evaluation criteria, which reduces their reliability. For further verification, we first consider avoiding issues of inconsistent conceptualization and vague expression in existing NLG quality criteria themselves. So we summarize a clear hierarchical classification system for 11 common aspects with corresponding different criteria from previous studies involved. Inspired by behavioral testing, we elaborately design 18 types of aspect-targeted perturbation attacks for fine-grained analysis of the evaluation behaviors of different LLMs. We also conduct human annotations beyond the guidance of the classification system to validate the impact of the perturbations. Our experimental results reveal confusion issues inherent in LLMs, as well as other noteworthy phenomena, and necessitate further research and improvements for LLM-based evaluation.
2023
AdapterDistillation: Non-Destructive Task Composition with Knowledge Distillation
Junjie Wang
|
Yicheng Chen
|
Wangshu Zhang
|
Sen Hu
|
Teng Xu
|
Jing Zheng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track
Leveraging knowledge from multiple tasks through introducing a small number of task specific parameters into each transformer layer, also known as adapters, receives much attention recently. However, adding an extra fusion layer to implement knowledge composition not only increases the inference time but also is non-scalable for some applications. To avoid these issues, we propose a two-stage knowledge distillation algorithm called AdapterDistillation. In the first stage, we extract task specific knowledge by using local data to train a student adapter. In the second stage, we distill the knowledge from the existing teacher adapters into the student adapter to help its inference. Extensive experiments on frequently asked question retrieval in task-oriented dialog systems validate the efficiency of AdapterDistillation. We show that AdapterDistillation outperforms existing algorithms in terms of accuracy, resource consumption and inference time.
Search
Co-authors
- Sen Hu 2
- Teng Xu 2
- Jing Zheng 2
- Junjie Wang 1
- Wangshu Zhang 1
- show all...