Yin Fang


2025

pdf bib
Noise-powered Multi-modal Knowledge Graph Representation Framework
Zhuo Chen | Yin Fang | Yichi Zhang | Lingbing Guo | Jiaoyan Chen | Jeff Z. Pan | Huajun Chen | Wen Zhang
Proceedings of the 31st International Conference on Computational Linguistics

The rise of Multi-modal Pre-training highlights the necessity for a unified Multi-Modal Knowledge Graph (MMKG) representation learning framework. Such a framework is essential for embedding structured knowledge into multi-modal Large Language Models effectively, alleviating issues like knowledge misconceptions and multi-modal hallucinations. In this work, we explore the efficacy of models in accurately embedding entities within MMKGs through two pivotal tasks: Multi-modal Knowledge Graph Completion (MKGC) and Multi-modal Entity Alignment (MMEA). Building on this foundation, we propose a novel SNAG method that utilizes a Transformer-based architecture equipped with modality-level noise masking to robustly integrate multi-modal entity features in KGs. By incorporating specific training objectives for both MKGC and MMEA, our approach achieves SOTA performance across a total of ten datasets, demonstrating its versatility. Moreover, SNAG can not only function as a standalone model but also enhance other existing methods, providing stable performance improvements. Code and data are available at https://github.com/zjukg/SNAG.

2024

pdf bib
Knowledgeable Preference Alignment for LLMs in Domain-specific Question Answering
Yichi Zhang | Zhuo Chen | Yin Fang | Yanxi Lu | Li Fangming | Wen Zhang | Huajun Chen
Findings of the Association for Computational Linguistics: ACL 2024

Deploying large language models (LLMs) to real scenarios for domain-specific question answering (QA) is a key thrust for LLM applications, which poses numerous challenges, especially in ensuring that responses are both accommodating to user requirements and appropriately leveraging domain-specific knowledge bases. They are the two major difficulties for LLM application as vanilla fine-tuning falls short of addressing. Combining these requirements, we conceive of them as the requirement for the model’s preference to be harmoniously aligned with humans’. Thus, we introduce Knowledgeable Preference AlignmenT (KnowPAT), which constructs two kinds of preference sets to tackle the two issues. Besides, we design a new alignment objective to align the LLM preference with different human preferences uniformly, aiming to optimize LLM performance in real-world, domain-specific QA settings. Adequate experiments and comprehensive comparisons with 15 baseline methods illustrate that our KnowPAT is a superior pipeline for real-scenario domain-specific QA with LLMs.

pdf bib
BioT5+: Towards Generalized Biological Understanding with IUPAC Integration and Multi-task Tuning
Qizhi Pei | Lijun Wu | Kaiyuan Gao | Xiaozhuan Liang | Yin Fang | Jinhua Zhu | Shufang Xie | Tao Qin | Rui Yan
Findings of the Association for Computational Linguistics: ACL 2024

Recent research trends in computational biology have increasingly focused on integrating text and bio-entity modeling, especially in the context of molecules and proteins. However, previous efforts like BioT5 faced challenges in generalizing across diverse tasks and lacked a nuanced understanding of molecular structures, particularly in their textual representations (e.g., IUPAC). This paper introduces BioT5+, an extension of the BioT5 framework, tailored to enhance biological research and drug discovery. BioT5+ incorporates several novel features: integration of IUPAC names for molecular understanding, inclusion of extensive bio-text and molecule data from sources like bioRxiv and PubChem, the multi-task instruction tuning for generality across tasks, and a numerical tokenization technique for improved processing of numerical data. These enhancements allow BioT5+ to bridge the gap between molecular representations and their textual descriptions, providing a more holistic understanding of biological entities, and largely improving the grounded reasoning of bio-text and bio-sequences. The model is pre-trained and fine-tuned with a large number of experiments, including 3 types of problems (classification, regression, generation), 15 kinds of tasks, and 21 total benchmark datasets, demonstrating the remarkable performance and state-of-the-art results in most cases. BioT5+ stands out for its ability to capture intricate relationships in biological data, thereby contributing significantly to bioinformatics and computational biology. Our code is available at https://github.com/QizhiPei/BioT5.