Yinghan Long


2024

pdf bib
Prompt-Based Bias Calibration for Better Zero/Few-Shot Learning of Language Models
Kang He | Yinghan Long | Kaushik Roy
Findings of the Association for Computational Linguistics: EMNLP 2024

Prompt-based learning is susceptible to intrinsic bias present in pre-trained language models (LMs), leading to sub-optimal performance in prompt-based zero/few-shot settings. In this work, we propose a null-input prompting method to calibrate intrinsic bias encoded in pre-trained LMs. Different from prior efforts that address intrinsic bias primarily for social fairness and often involve excessive computational cost, our objective is to explore enhancing LMs’ performance in downstream zero/few-shot learning while emphasizing the efficiency of intrinsic bias calibration. Specifically, we leverage a diverse set of auto-selected null-meaning inputs generated from GPT-4 to probe intrinsic bias of pre-trained LMs. Utilizing the bias-reflected probability distribution, we formulate a distribution disparity loss for bias calibration, where we exclusively update bias parameters (0.1% of total parameters) of LMs towards equal probability distribution. Experimental results show that the calibration promotes an equitable starting point for LMs while preserving language modeling abilities. Across a wide range of datasets, including sentiment analysis and topic classification, our method significantly improves zero/few-shot learning performance of LMs for both in-context learning and prompt-based fine-tuning (on average 9% and 2%, respectively).

2023

pdf bib
Segmented Recurrent Transformer: An Efficient Sequence-to-Sequence Model
Yinghan Long | Sayeed Chowdhury | Kaushik Roy
Findings of the Association for Computational Linguistics: EMNLP 2023

Transformers have shown dominant performance across a range of domains including language and vision. However, their computational cost grows quadratically with the sequence length, making their usage prohibitive for resource-constrained applications. To counter this, our approach is to divide the whole sequence into segments and apply attention to the individual segments. We propose a segmented recurrent transformer (SRformer) that combines segmented (local) attention with recurrent attention. The loss caused by reducing the attention window length is compensated by aggregating information across segments with recurrent attention. SRformer leverages Recurrent Accumulate-and-Fire (RAF) neurons’ inherent memory to update the cumulative product of keys and values. The segmented attention and lightweight RAF neurons ensure the efficiency of the proposed transformer. Such an approach leads to models with sequential processing capability at a lower computation/memory cost. We apply the proposed method to T5 and BART transformers. The modified models are tested on summarization datasets including CNN-dailymail, XSUM, ArXiv, and MediaSUM. Notably, using segmented inputs of varied sizes, the proposed model achieves 6-22% higher ROUGE1 scores than a segmented transformer and outperforms other recurrent transformer approaches. Furthermore, compared to full attention, the proposed model reduces the computational complexity of cross attention by around 40%.