Yingjin Song
2024
Context-aware Visual Storytelling with Visual Prefix Tuning and Contrastive Learning
Yingjin Song
|
Denis Paperno
|
Albert Gatt
Proceedings of the 17th International Natural Language Generation Conference
Visual storytelling systems generate multi-sentence stories from image sequences. In this task, capturing contextual information and bridging visual variation bring additional challenges. We propose a simple yet effective framework that leverages the generalization capabilities of pretrained foundation models, only training a lightweight vision-language mapping network to connect modalities, while incorporating context to enhance coherence. We introduce a multimodal contrastive objective that also improves visual relevance and story informativeness. Extensive experimental results, across both automatic metrics and human evaluations, demonstrate that the stories generated by our framework are diverse, coherent, informative, and interesting.
2023
Modeling Emotion Dynamics in Song Lyrics with State Space Models
Yingjin Song
|
Daniel Beck
Transactions of the Association for Computational Linguistics, Volume 11
Most previous work in music emotion recognition assumes a single or a few song-level labels for the whole song. While it is known that different emotions can vary in intensity within a song, annotated data for this setup is scarce and difficult to obtain. In this work, we propose a method to predict emotion dynamics in song lyrics without song-level supervision. We frame each song as a time series and employ a State Space Model (SSM), combining a sentence-level emotion predictor with an Expectation-Maximization (EM) procedure to generate the full emotion dynamics. Our experiments show that applying our method consistently improves the performance of sentence-level baselines without requiring any annotated songs, making it ideal for limited training data scenarios. Further analysis through case studies shows the benefits of our method while also indicating the limitations and pointing to future directions.
Search