Yingqiang Ge
2024
UP5: Unbiased Foundation Model for Fairness-aware Recommendation
Wenyue Hua
|
Yingqiang Ge
|
Shuyuan Xu
|
Jianchao Ji
|
Zelong Li
|
Yongfeng Zhang
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent advances in Foundation Models such as Large Language Models (LLMs) have propelled them to the forefront of Recommender Systems (RS). Despite their utility, there is a growing concern that LLMs might inadvertently perpetuate societal stereotypes, resulting in unfair recommendations. Since fairness is critical for RS as many users take it for decision-making and demand fulfillment, this paper focuses on user-side fairness for LLM-based recommendation where the users may require a recommender system to be fair on specific sensitive features such as gender or age. In this paper, we dive into the extent of unfairness exhibited by LLM-based recommender models based on both T5 and LLaMA backbones, and discuss appropriate methods for promoting equitable treatment of users in LLM-based recommendation models. We introduce a novel Counterfactually-Fair-Prompt (CFP) method towards Unbiased Foundation mOdels (UFO) for fairness-aware LLM-based recommendation. Experiments are conducted on two real-world datasets, MovieLens-1M and Insurance, and compared with both matching-based and sequential-based fairness-aware recommendation models. Results show that CFP achieves better recommendation performance with a high level of fairness.
2022
Improving Personalized Explanation Generation through Visualization
Shijie Geng
|
Zuohui Fu
|
Yingqiang Ge
|
Lei Li
|
Gerard de Melo
|
Yongfeng Zhang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In modern recommender systems, there are usually comments or reviews from users that justify their ratings for different items. Trained on such textual corpus, explainable recommendation models learn to discover user interests and generate personalized explanations. Though able to provide plausible explanations, existing models tend to generate repeated sentences for different items or empty sentences with insufficient details. This begs an interesting question: can we immerse the models in a multimodal environment to gain proper awareness of real-world concepts and alleviate above shortcomings? To this end, we propose a visually-enhanced approach named METER with the help of visualization generation and text–image matching discrimination: the explainable recommendation model is encouraged to visualize what it refers to while incurring a penalty if the visualization is incongruent with the textual explanation. Experimental results and a manual assessment demonstrate that our approach can improve not only the text quality but also the diversity and explainability of the generated explanations.
Search
Fix data
Co-authors
- Yongfeng Zhang 2
- Gerard De Melo 1
- Zuohui Fu 1
- Shijie Geng 1
- Wenyue Hua 1
- show all...