Yiqing Cao
2024
Formality is Favored: Unraveling the Learning Preferences of Large Language Models on Data with Conflicting Knowledge
Jiahuan Li
|
Yiqing Cao
|
Shujian Huang
|
Jiajun Chen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Having been trained on massive pretraining data, large language models have shown excellent performance on many knowledge-intensive tasks. However, pretraining data tends to contain misleading and even conflicting information, and it is intriguing to understand how LLMs handle these noisy data during training. In this study, we systematically analyze LLMs’ learning preferences for data with conflicting knowledge. We find that pretrained LLMs establish learning preferences similar to humans, i.e., preferences towards formal texts and texts with fewer spelling errors, resulting in faster learning and more favorable treatment of knowledge in data with such features when facing conflicts. This finding is generalizable across models and languages and is more evident in larger models. An in-depth analysis reveals that LLMs tend to trust data with features that signify consistency with the majority of data, and it is possible to instill new preferences and erase old ones by manipulating the degree of consistency with the majority data.
2023
The NPU-MSXF Speech-to-Speech Translation System for IWSLT 2023 Speech-to-Speech Translation Task
Kun Song
|
Yi Lei
|
Peikun Chen
|
Yiqing Cao
|
Kun Wei
|
Yongmao Zhang
|
Lei Xie
|
Ning Jiang
|
Guoqing Zhao
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)
This paper describes the NPU-MSXF system for the IWSLT 2023 speech-to-speech translation (S2ST) task which aims to translate from English speech of multi-source to Chinese speech. The system is built in a cascaded manner consisting of automatic speech recognition (ASR), machine translation (MT), and text-to-speech (TTS). We make tremendous efforts to handle the challenging multi-source input. Specifically, to improve the robustness to multi-source speech input, we adopt various data augmentation strategies and a ROVER-based score fusion on multiple ASR model outputs. To better handle the noisy ASR transcripts, we introduce a three-stage fine-tuning strategy to improve translation accuracy. Finally, we build a TTS model with high naturalness and sound quality, which leverages a two-stage framework, using network bottleneck features as a robust intermediate representation for speaker timbre and linguistic content disentanglement. Based on the two-stage framework, pre-trained speaker embedding is leveraged as a condition to transfer the speaker timbre in the source English speech to the translated Chinese speech. Experimental results show that our system has high translation accuracy, speech naturalness, sound quality, and speaker similarity. Moreover, it shows good robustness to multi-source data.
Search
Fix data
Co-authors
- Peikun Chen 1
- Jiajun Chen 1
- Shujian Huang (书剑 黄) 1
- Ning Jiang 1
- Yi Lei 1
- show all...