Yiting Lu


2022

pdf bib
Grammatical Error Correction Systems for Automated Assessment: Are They Susceptible to Universal Adversarial Attacks?
Vyas Raina | Yiting Lu | Mark Gales
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Grammatical error correction (GEC) systems are a useful tool for assessing a learner’s writing ability. These systems allow the grammatical proficiency of a candidate’s text to be assessed without requiring an examiner or teacher to read the text. A simple summary of a candidate’s ability can be measured by the total number of edits between the input text and the GEC system output: the fewer the edits the better the candidate. With advances in deep learning, GEC systems have become increasingly powerful and accurate. However, deep learning systems are susceptible to adversarial attacks, in which a small change at the input can cause large, undesired changes at the output. In the context of GEC for automated assessment, the aim of an attack can be to deceive the system into not correcting (concealing) grammatical errors to create the perception of higher language ability. An interesting aspect of adversarial attacks in this scenario is that the attack needs to be simple as it must be applied by, for example, a learner of English. The form of realistic attack examined in this work is appending the same phrase to each input sentence: a concatenative universal attack. The candidate only needs to learn a single attack phrase. State-of-the-art GEC systems are found to be susceptible to this form of simple attack, which transfers to different test sets as well as system architectures,

pdf bib
On Assessing and Developing Spoken ’Grammatical Error Correction’ Systems
Yiting Lu | Stefano Bannò | Mark Gales
Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022)

Spoken ‘grammatical error correction’ (SGEC) is an important process to provide feedback for second language learning. Due to a lack of end-to-end training data, SGEC is often implemented as a cascaded, modular system, consisting of speech recognition, disfluency removal, and grammatical error correction (GEC). This cascaded structure enables efficient use of training data for each module. It is, however, difficult to compare and evaluate the performance of individual modules as preceeding modules may introduce errors. For example the GEC module input depends on the output of non-native speech recognition and disfluency detection, both challenging tasks for learner data. This paper focuses on the assessment and development of SGEC systems. We first discuss metrics for evaluating SGEC, both individual modules and the overall system. The system-level metrics enable tuning for optimal system performance. A known issue in cascaded systems is error propagation between modules. To mitigate this problem semi-supervised approaches and self-distillation are investigated. Lastly, when SGEC system gets deployed it is important to give accurate feedback to users. Thus, we apply filtering to remove edits with low-confidence, aiming to improve overall feedback precision. The performance metrics are examined on a Linguaskill multi-level data set, which includes the original non-native speech, manual transcriptions and reference grammatical error corrections, to enable system analysis and development.