Yu Song


2024

pdf bib
HoneyComb: A Flexible LLM-Based Agent System for Materials Science
Huan Zhang | Yu Song | Ziyu Hou | Santiago Miret | Bang Liu
Findings of the Association for Computational Linguistics: EMNLP 2024

The emergence of specialized large language models (LLMs) has shown promise in addressing complex tasks in materials science. Many LLMs, however, often struggle with the distinct complexities of materials science tasks, such as computational challenges, and rely heavily on outdated implicit knowledge, leading to inaccuracies and hallucinations. To address these challenges, we introduce HoneyComb, the first LLM-based agent system specifically designed for materials science. HoneyComb leverages a reliable, high-quality materials science knowledge base (MatSciKB) and a sophisticated tool hub (ToolHub) tailored specifically for materials science to enhance its reasoning and computational capabilities. MatSciKB is a curated, structured knowledge collection based on reliable literature, while ToolHub employs an Inductive Tool Construction method to generate, decompose, and refine API tools for materials science. Additionally, HoneyComb leverages a retriever module that adaptively selects the appropriate knowledge source or tools for specific tasks, thereby ensuring accuracy and relevance. Our results demonstrate that HoneyComb significantly outperforms baseline models across various tasks in materials science, effectively bridging the gap between current LLM capabilities and the specialized needs of this domain. Furthermore, our adaptable framework can be easily extended to other scientific domains, highlighting its potential for broad applicability in advancing scientific research and applications.

2023

pdf bib
MatSci-NLP: Evaluating Scientific Language Models on Materials Science Language Tasks Using Text-to-Schema Modeling
Yu Song | Santiago Miret | Bang Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present MatSci-NLP, a natural language benchmark for evaluating the performance of natural language processing (NLP) models on materials science text. We construct the benchmark from publicly available materials science text data to encompass seven different NLP tasks, including conventional NLP tasks like named entity recognition and relation classification, as well as NLP tasks specific to materials science, such as synthesis action retrieval which relates to creating synthesis procedures for materials. We study various BERT-based models pretrained on different scientific text corpora on MatSci-NLP to understand the impact of pretraining strategies on understanding materials science text. Given the scarcity of high-quality annotated data in the materials science domain, we perform our fine-tuning experiments with limited training data to encourage the generalize across MatSci-NLP tasks. Our experiments in this low-resource training setting show that language models pretrained on scientific text outperform BERT trained on general text. MatBERT, a model pretrained specifically on materials science journals, generally performs best for most tasks. Moreover, we propose a unified text-to-schema for multitask learning on {pasted macro ‘BENCHMARK’} and compare its performance with traditional fine-tuning methods. In our analysis of different training methods, we find that our proposed text-to-schema methods inspired by question-answering consistently outperform single and multitask NLP fine-tuning methods. The code and datasets are publicly available https://github.com/BangLab-UdeM-Mila/NLP4MatSci-ACL23.

pdf bib
HoneyBee: Progressive Instruction Finetuning of Large Language Models for Materials Science
Yu Song | Santiago Miret | Huan Zhang | Bang Liu
Findings of the Association for Computational Linguistics: EMNLP 2023

We propose an instruction-based process for trustworthy data curation in materials science (MatSci-Instruct), which we then apply to finetune a LLaMa-based language model targeted for materials science (HoneyBee). MatSci-Instruct helps alleviate the scarcity of relevant, high-quality materials science textual data available in the open literature, and HoneyBee is the first billion-parameter language model specialized to materials science. In MatSci-Instruct we improve the trustworthiness of generated data by prompting multiple commercially available large language models for generation with an Instructor module (e.g. Chat-GPT) and verification from an independent Verifier module (e.g. Claude). Using MatSci-Instruct, we construct a dataset of multiple tasks and measure the quality of our dataset along multiple dimensions, including accuracy against known facts, relevance to materials science, as well as completeness and reasonableness of the data. Moreover, we iteratively generate more targeted instructions and instruction-data in a finetuning-evaluation-feedback loop leading to progressively better performance for our finetuned HoneyBee models. Our evaluation on the MatSci-NLP benchmark shows HoneyBee’s outperformance of existing language models on materials science tasks and iterative improvement in successive stages of instruction-data refinement. We study the quality of HoneyBee’s language modeling through automatic evaluation and analyze case studies to further understand the model’s capabilities and limitations. Our code and relevant datasets are publicly available at https://github.com/BangLab-UdeM-Mila/NLP4MatSci-HoneyBee.

2006

pdf bib
MMR-based Active Machine Learning for Bio Named Entity Recognition
Seokhwan Kim | Yu Song | Kyungduk Kim | Jeong-Won Cha | Gary Geunbae Lee
Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers

2005

pdf bib
POSBIOTM/W: A Development Workbench for Machine Learning Oriented Biomedical Text Mining System
Kyungduk Kim | Yu Song | Gary Geunbae Lee
Proceedings of HLT/EMNLP 2005 Interactive Demonstrations

2004

pdf bib
POSBIOTM-NER in the Shared Task of BioNLP/NLPBA2004
Yu Song | Eunju Kim | Gary Geunbae Lee | Byoung-kee Yi
Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications (NLPBA/BioNLP)