Yuanchun Wang
2023
GKD: A General Knowledge Distillation Framework for Large-scale Pre-trained Language Model
Shicheng Tan
|
Weng Lam Tam
|
Yuanchun Wang
|
Wenwen Gong
|
Shu Zhao
|
Peng Zhang
|
Jie Tang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)
Currently, the reduction in the parameter scale of large-scale pre-trained language models (PLMs) through knowledge distillation has greatly facilitated their widespread deployment on various devices. However, the deployment of knowledge distillation systems faces great challenges in real-world industrial-strength applications, which require the use of complex distillation methods on even larger-scale PLMs (over 10B), limited by memory on GPUs and the switching of methods. To overcome these challenges, we propose GKD, a general knowledge distillation framework that supports distillation on larger-scale PLMs using various distillation methods. With GKD, developers can build larger distillation models on memory-limited GPUs and easily switch and combine different distillation methods within a single framework. Experimental results show that GKD can support the distillation of at least 100B-scale PLMs and 25 mainstream methods on 8 NVIDIA A100 (40GB) GPUs.
Are Intermediate Layers and Labels Really Necessary? A General Language Model Distillation Method
Shicheng Tan
|
Weng Lam Tam
|
Yuanchun Wang
|
Wenwen Gong
|
Shu Zhao
|
Peng Zhang
|
Jie Tang
Findings of the Association for Computational Linguistics: ACL 2023
The large scale of pre-trained language models poses a challenge for their deployment on various devices, with a growing emphasis on methods to compress these models, particularly knowledge distillation. However, current knowledge distillation methods rely on the model’s intermediate layer features and the golden labels (also called hard labels), which usually require aligned model architecture and enough labeled data respectively. Moreover, the parameters of vocabulary are usually neglected in existing methods. To address these problems, we propose a general language model distillation (GLMD) method that performs two-stage word prediction distillation and vocabulary compression, which is simple and surprisingly shows extremely strong performance. Specifically, GLMD supports more general application scenarios by eliminating the constraints of dimension and structure between models and the need for labeled datasets through the absence of intermediate layers and golden labels. Meanwhile, based on the long-tailed distribution of word frequencies in the data, GLMD designs a strategy of vocabulary compression through decreasing vocabulary size instead of dimensionality. Experimental results show that our method outperforms 25 state-of-the-art methods on the SuperGLUE benchmark, achieving an average score that surpasses the best method by 3%.
Search
Fix data
Co-authors
- Wenwen Gong 2
- Weng Lam Tam 2
- Shicheng Tan 2
- Jie Tang 2
- Peng Zhang 2
- show all...
- Shu Zhao 2