Yuanhao Yue


2025

pdf bib
Building a Family of Data Augmentation Models for Low-cost LLM Fine-tuning on the Cloud
Chengyu Wang | Yuanhao Yue | Jun Huang | Peng Wang
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track

Specializing LLMs in various domain-specific tasks has emerged as a critical step towards achieving high performance. However, the construction and annotation of datasets in specific domains are always very costly. Apart from using superior and expensive closed-source LLM APIs to construct datasets, some open-source models have become strong enough to handle dataset construction in many scenarios. Thus, we present a family of data augmentation models designed to significantly improve the efficiency for model fine-tuning. These models, trained based on sufficiently small LLMs, support key functionalities with low inference costs: instruction expansion, instruction refinement, and instruction-response pair expansion. To fulfill this goal, we first construct an automatic data collection system with seed datasets generated from both public repositories and our in-house datasets. This system leverages powerful LLMs to expand, refine and re-write the instructions and responses, incorporating quality assessment techniques. Following this, we introduce the training process of our models, which effectively distills task-solving and text synthesis abilities from teacher LLMs. Finally, we demonstrate how we integrate these functionalities into a machine learning platform to support low-cost LLM fine-tuning from both dataset preparation and training perspectives for users. Experiments and an application study prove the effectiveness of our approach.

2024

pdf bib
Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning
Yuanhao Yue | Chengyu Wang | Jun Huang | Peng Wang
Findings of the Association for Computational Linguistics: EMNLP 2024

Instruction tuning aims to align large language models (LLMs) with open-domain instructions and human-preferred responses. While several studies have explored autonomous approaches to distilling and annotating instructions from powerful proprietary LLMs, such as ChatGPT, they often neglect the impact of the distributions and characteristics of tasks, together with the varying difficulty of instructions in training sets. This oversight can lead to imbalanced knowledge capabilities and poor generalization powers of student LLMs. To address these challenges, we introduce Task-Aware Curriculum Planning for Instruction Refinement (TAPIR), a multi-round distillation framework that utilizes an oracle LLM to select instructions that are difficult for a student LLM to follow. To balance the student’s capabilities, task distributions in training sets are adjusted with responses automatically refined according to their corresponding tasks. In addition, by incorporating curriculum planning, our approach systematically escalates the difficulty levels of tasks, progressively enhancing the student LLM’s capabilities. We rigorously evaluate TAPIR using several widely recognized benchmarks (such as AlpacaEval 2.0, MT-Bench, etc.) and multiple student LLMs. Empirical results demonstrate that student LLMs, trained with our method and less training data, outperform larger instruction-tuned models and strong distillation baselines.