Yuanzhi Li
2018
Linear Algebraic Structure of Word Senses, with Applications to Polysemy
Sanjeev Arora
|
Yuanzhi Li
|
Yingyu Liang
|
Tengyu Ma
|
Andrej Risteski
Transactions of the Association for Computational Linguistics, Volume 6
Word embeddings are ubiquitous in NLP and information retrieval, but it is unclear what they represent when the word is polysemous. Here it is shown that multiple word senses reside in linear superposition within the word embedding and simple sparse coding can recover vectors that approximately capture the senses. The success of our approach, which applies to several embedding methods, is mathematically explained using a variant of the random walk on discourses model (Arora et al., 2016). A novel aspect of our technique is that each extracted word sense is accompanied by one of about 2000 “discourse atoms” that gives a succinct description of which other words co-occur with that word sense. Discourse atoms can be of independent interest, and make the method potentially more useful. Empirical tests are used to verify and support the theory.
2016
A Latent Variable Model Approach to PMI-based Word Embeddings
Sanjeev Arora
|
Yuanzhi Li
|
Yingyu Liang
|
Tengyu Ma
|
Andrej Risteski
Transactions of the Association for Computational Linguistics, Volume 4
Semantic word embeddings represent the meaning of a word via a vector, and are created by diverse methods. Many use nonlinear operations on co-occurrence statistics, and have hand-tuned hyperparameters and reweighting methods. This paper proposes a new generative model, a dynamic version of the log-linear topic model of Mnih and Hinton (2007). The methodological novelty is to use the prior to compute closed form expressions for word statistics. This provides a theoretical justification for nonlinear models like PMI, word2vec, and GloVe, as well as some hyperparameter choices. It also helps explain why low-dimensional semantic embeddings contain linear algebraic structure that allows solution of word analogies, as shown by Mikolov et al. (2013a) and many subsequent papers. Experimental support is provided for the generative model assumptions, the most important of which is that latent word vectors are fairly uniformly dispersed in space.