Yufeng Diao


2024

pdf bib
Giving Control Back to Models: Enabling Offensive Language Detection Models to Autonomously Identify and Mitigate Biases
Jiapeng Liu | Weijie Li | Xiaochao Fan | Wenjun Deng | Liang Yang | Yong Li | Yufeng Diao
Findings of the Association for Computational Linguistics: EMNLP 2024

The rapid development of social media has led to an increase in online harassment and offensive speech, posing significant challenges for effective content moderation. Existing automated detection models often exhibit a bias towards predicting offensive speech based on specific vocabulary, which not only compromises model fairness but also potentially exacerbates biases against vulnerable and minority groups. Addressing these issues, this paper proposes a bias self-awareness and data self-iteration framework for mitigating model biases. This framework aims to “giving control back to models: enabling offensive language detection models to autonomously identify and mitigate biases” through bias self-awareness algorithms and self-iterative data augmentation method. Experimental results demonstrate that the proposed framework effectively reduces the false positive rate of models in both in-distribution and out-of-distribution tests, enhances model accuracy and fairness, and shows promising performance improvements in detecting offensive speech on larger-scale datasets.

pdf bib
“Barking up the Right Tree”, a GAN-Based Pun Generation Model through Semantic Pruning
JingJie Zeng | Liang Yang | Jiahao Kang | Yufeng Diao | Zhihao Yang | Hongfei Lin
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In the realm of artificial intelligence and linguistics, the automatic generation of humor, particularly puns, remains a complex task. This paper introduces an innovative approach that employs a Generative Adversarial Network (GAN) and semantic pruning techniques to generate humorous puns. We initiate our process by identifying potential pun candidates via semantic pruning. This is followed by the use of contrastive learning to decode the unique characteristics of puns, emphasizing both correct and incorrect interpretations. The learned features from contrastive learning are utilized within our GAN model to better capture the semantic nuances of puns. Specifically, the generator exploits the pruned semantic tree to generate pun texts, while the discriminator evaluates the generated puns, ensuring both linguistic correctness and humor. Evaluation results highlight our model’s capacity to produce semantically coherent and humorous puns, demonstrating an enhancement over prior methods and approach human-level performance. This work contributes significantly to the field of computational humor, advancing the capabilities of automatic pun generation.

2021

pdf bib
Hate Speech Detection Based on Sentiment Knowledge Sharing
Xianbing Zhou | Yang Yong | Xiaochao Fan | Ge Ren | Yunfeng Song | Yufeng Diao | Liang Yang | Hongfei Lin
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The wanton spread of hate speech on the internet brings great harm to society and families. It is urgent to establish and improve automatic detection and active avoidance mechanisms for hate speech. While there exist methods for hate speech detection, they stereotype words and hence suffer from inherently biased training. In other words, getting more affective features from other affective resources will significantly affect the performance of hate speech detection. In this paper, we propose a hate speech detection framework based on sentiment knowledge sharing. While extracting the affective features of the target sentence itself, we make better use of the sentiment features from external resources, and finally fuse features from different feature extraction units to detect hate speech. Experimental results on two public datasets demonstrate the effectiveness of our model.

2019

pdf bib
Transformer-Based Capsule Network For Stock Movement Prediction
Jintao Liu | Hongfei Lin | Xikai Liu | Bo Xu | Yuqi Ren | Yufeng Diao | Liang Yang
Proceedings of the First Workshop on Financial Technology and Natural Language Processing

2018

pdf bib
WECA: A WordNet-Encoded Collocation-Attention Network for Homographic Pun Recognition
Yufeng Diao | Hongfei Lin | Di Wu | Liang Yang | Kan Xu | Zhihao Yang | Jian Wang | Shaowu Zhang | Bo Xu | Dongyu Zhang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Homographic puns have a long history in human writing, widely used in written and spoken literature, which usually occur in a certain syntactic or stylistic structure. How to recognize homographic puns is an important research. However, homographic pun recognition does not solve very well in existing work. In this work, we first use WordNet to understand and expand word embedding for settling the polysemy of homographic puns, and then propose a WordNet-Encoded Collocation-Attention network model (WECA) which combined with the context weights for recognizing the puns. Our experiments on the SemEval2017 Task7 and Pun of the Day demonstrate that the proposed model is able to distinguish between homographic pun and non-homographic pun texts. We show the effectiveness of the model to present the capability of choosing qualitatively informative words. The results show that our model achieves the state-of-the-art performance on homographic puns recognition.