Yumeng Zhang
2024
CLEAN–EVAL: Clean Evaluation on Contaminated Large Language Models
Wenhong Zhu
|
Hongkun Hao
|
Zhiwei He
|
Yun-Ze Song
|
Jiao Yueyang
|
Yumeng Zhang
|
Hanxu Hu
|
Yiran Wei
|
Rui Wang
|
Hongyuan Lu
Findings of the Association for Computational Linguistics: NAACL 2024
We are currently in an era of fierce competition among various large language models (LLMs), continuously pushing the boundaries of benchmark performance. However, genuinely assessing the capabilities of these LLMs has become a challenging and critical issue due to potential data contamination. In this paper, we propose a novel and valuable method, Clean-Eval, which mitigates the issue of data contamination and evaluates the LLMs more cleanly. Clean-Eval employs a neural-based model to paraphrase and back-translate the contaminated data into a candidate set, generating expressions with the same meaning but in different surface forms. A semantic detector is then used to filter those generated low-quality samples to narrow down this candidate set. Candidates with moderate BLEURT scores against the original samples are selected as the final evaluation set. According to human assessment, this set is almost semantically equivalent to the original contamination set but expressed differently. We conduct experiments on 20 existing benchmarks across diverse tasks, and results demonstrate that Clean-Eval substantially restores the actual evaluation results on contaminated LLMs under both few-shot learning and fine-tuning scenarios.
Unveiling the Generalization Power of Fine-Tuned Large Language Models
Haoran Yang
|
Yumeng Zhang
|
Jiaqi Xu
|
Hongyuan Lu
|
Pheng-Ann Heng
|
Wai Lam
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
While Large Language Models (LLMs) have demonstrated exceptional multitasking abilities, fine-tuning these models on downstream, domain-specific datasets is often necessary to yield superior performance on test sets compared to their counterparts without fine-tuning. However, the comprehensive effects of fine-tuning on the LLMs’ generalization ability are not fully understood.This paper delves into the differences between original, unmodified LLMs and their fine-tuned variants. Our primary investigation centers on whether fine-tuning affects the generalization ability intrinsic to LLMs. To elaborate on this, we conduct extensive experiments across five distinct language tasks on various datasets.Our main findings reveal that models fine-tuned on generation and classification tasks exhibit dissimilar behaviors in generalizing to different domains and tasks.Intriguingly, we observe that integrating the in-context learning strategy during fine-tuning on generation tasks can enhance the model’s generalization ability.Through this systematic investigation, we aim to contribute valuable insights into the evolving landscape of fine-tuning practices for LLMs.