Yunseon Choi
2024
Hard Prompts Made Interpretable: Sparse Entropy Regularization for Prompt Tuning with RL
Yunseon Choi
|
Sangmin Bae
|
Seonghyun Ban
|
Minchan Jeong
|
Chuheng Zhang
|
Lei Song
|
Li Zhao
|
Jiang Bian
|
Kee-Eung Kim
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
With the advent of foundation models, prompt tuning has positioned itself as an important technique for directing model behaviors and eliciting desired responses. Prompt tuning regards selecting appropriate keywords included into the input, thereby adapting to the downstream task without adjusting or fine-tuning the model parameters. There is a wide range of work in prompt tuning, from approaches that directly harness the backpropagated gradient signals from the model, to those employing black-box optimization such as reinforcement learning (RL) methods. Our primary focus is on RLPrompt, which aims to find optimal prompt tokens leveraging soft Q-learning. While the results show promise, we have observed that the prompts frequently appear unnatural, which impedes their interpretability. We address this limitation by using sparse Tsallis entropy regularization, a principled approach to filtering out unlikely tokens from consideration. We extensively evaluate our approach across various tasks, including few-shot text classification, unsupervised text style transfer, and textual inversion from images. The results indicate a notable improvement over baselines, highlighting the efficacy of our approach in addressing the challenges of prompt tuning. Moreover, we show that the prompts discovered using our method are more natural and interpretable compared to those from other baselines.
2022
Learning to Embed Multi-Modal Contexts for Situated Conversational Agents
Haeju Lee
|
Oh Joon Kwon
|
Yunseon Choi
|
Minho Park
|
Ran Han
|
Yoonhyung Kim
|
Jinhyeon Kim
|
Youngjune Lee
|
Haebin Shin
|
Kangwook Lee
|
Kee-Eung Kim
Findings of the Association for Computational Linguistics: NAACL 2022
The Situated Interactive Multi-Modal Conversations (SIMMC) 2.0 aims to create virtual shopping assistants that can accept complex multi-modal inputs, i.e. visual appearances of objects and user utterances. It consists of four subtasks, multi-modal disambiguation (MM-Disamb), multi-modal coreference resolution (MM-Coref), multi-modal dialog state tracking (MM-DST), and response retrieval and generation. While many task-oriented dialog systems usually tackle each subtask separately, we propose a jointly learned multi-modal encoder-decoder that incorporates visual inputs and performs all four subtasks at once for efficiency. This approach won the MM-Coref and response retrieval subtasks and nominated runner-up for the remaining subtasks using a single unified model at the 10th Dialog Systems Technology Challenge (DSTC10), setting a high bar for the novel task of multi-modal task-oriented dialog systems.