Yutong Li


2024

pdf bib
Evaluating Psychological Safety of Large Language Models
Xingxuan Li | Yutong Li | Lin Qiu | Shafiq Joty | Lidong Bing
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

In this work, we designed unbiased prompts to systematically evaluate the psychological safety of large language models (LLMs). First, we tested five different LLMs by using two personality tests: Short Dark Triad (SD-3) and Big Five Inventory (BFI). All models scored higher than the human average on SD-3, suggesting a relatively darker personality pattern. Despite being instruction fine-tuned with safety metrics to reduce toxicity, InstructGPT, GPT-3.5, and GPT-4 still showed dark personality patterns; these models scored higher than self-supervised GPT-3 on the Machiavellianism and narcissism traits on SD-3. Then, we evaluated the LLMs in the GPT series by using well-being tests to study the impact of fine-tuning with more training data. We observed a continuous increase in the well-being scores of GPT models. Following these observations, we showed that fine-tuning Llama-2-chat-7B with responses from BFI using direct preference optimization could effectively reduce the psychological toxicity of the model. Based on the findings, we recommended the application of systematic and comprehensive psychological metrics to further evaluate and improve the safety of LLMs.

2018

pdf bib
Extraction Meets Abstraction: Ideal Answer Generation for Biomedical Questions
Yutong Li | Nicholas Gekakis | Qiuze Wu | Boyue Li | Khyathi Chandu | Eric Nyberg
Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering

The growing number of biomedical publications is a challenge for human researchers, who invest considerable effort to search for relevant documents and pinpointed answers. Biomedical Question Answering can automatically generate answers for a user’s topic or question, significantly reducing the effort required to locate the most relevant information in a large document corpus. Extractive summarization techniques, which concatenate the most relevant text units drawn from multiple documents, perform well on automatic evaluation metrics like ROUGE, but score poorly on human readability, due to the presence of redundant text and grammatical errors in the answer. This work moves toward abstractive summarization, which attempts to distill and present the meaning of the original text in a more coherent way. We incorporate a sentence fusion approach, based on Integer Linear Programming, along with three novel approaches for sentence ordering, in an attempt to improve the human readability of ideal answers. Using an open framework for configuration space exploration (BOOM), we tested over 2000 unique system configurations in order to identify the best-performing combinations for the sixth edition of Phase B of the BioASQ challenge.