Structured data, prevalent in tables, databases, and knowledge graphs, poses a significant challenge in its representation. With the advent of large language models (LLMs), there has been a shift towards linearization-based methods, which process structured data as sequential token streams, diverging from approaches that explicitly model structure, often as a graph. Crucially, there remains a gap in our understanding of how these linearization-based methods handle structured data, which is inherently non-linear.This work investigates the linear handling of structured data in encoder-decoder language models, specifically T5. Our findings reveal the model’s ability to mimic human-designed processes such as schema linking and syntax prediction, indicating a deep, meaningful learning of structure beyond simple token sequencing. We also uncover insights into the model’s internal mechanisms, including the ego-centric nature of structure node encodings and the potential for model compression due to modality fusion redundancy. Overall, this work sheds light on the inner workings of linearization-based methods and could potentially provide guidance for future research.
Entity set expansion (ESE) aims at obtaining a more complete set of entities given a textual corpus and a seed set of entities of a concept. Although it is a critical task in many NLP applications, existing benchmarks are limited to well-formed text (e.g., Wikipedia) and well-defined concepts (e.g., countries and diseases). Furthermore, only a small number of predictions are evaluated compared to the actual size of an entity set. A rigorous assessment of ESE methods warrants more comprehensive benchmarks and evaluation. In this paper, we consider user-generated text to understand the generalizability of ESE methods. We develop new benchmarks and propose more rigorous evaluation metrics for assessing the performance of ESE methods. Additionally, we identify phenomena such as non-named entities, multifaceted entities, vague concepts that are more prevalent in user-generated text than well-formed text, and use them to profile ESE methods. We observe that the strong performance of state-of-the-art ESE methods does not generalize well to user-generated text. We conduct comprehensive empirical analysis and draw insights from the findings.
We present an interactive Plotting Agent, a system that enables users to directly manipulate plots using natural language instructions within an interactive programming environment. The Plotting Agent maps language to plot updates. We formulate this problem as a slot-based task-oriented dialog problem, which we tackle with a sequence-to-sequence model. This plotting model while accurate in most cases, still makes errors, therefore, the system allows a feedback mode, wherein the user is presented with a top-k list of plots, among which the user can pick the desired one. From this kind of feedback, we can then, in principle, continuously learn and improve the system. Given that plotting is widely used across data-driven fields, we believe our demonstration will be of interest to both practitioners such as data scientists broadly defined, and researchers interested in natural language interfaces.
This paper presents the problem of conversational plotting agents that carry out plotting actions from natural language instructions. To facilitate the development of such agents, we introduce ChartDialogs, a new multi-turn dialog dataset, covering a popular plotting library, matplotlib. The dataset contains over 15,000 dialog turns from 3,200 dialogs covering the majority of matplotlib plot types. Extensive experiments show the best-performing method achieving 61% plotting accuracy, demonstrating that the dataset presents a non-trivial challenge for future research on this task.