Zeyi Liao
2024
In Search of the Long-Tail: Systematic Generation of Long-Tail Inferential Knowledge via Logical Rule Guided Search
Huihan Li
|
Yuting Ning
|
Zeyi Liao
|
Siyuan Wang
|
Xiang Lorraine Li
|
Ximing Lu
|
Wenting Zhao
|
Faeze Brahman
|
Yejin Choi
|
Xiang Ren
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
To effectively use large language models (LLMs) for real-world queries, it is imperative that they generalize to the long-tail distribution, i.e. rare examples where models exhibit low confidence. In this work, we take the first step towards evaluating LLMs in the long-tail distribution of inferential knowledge. We exemplify long-tail evaluation on the Natural Language Inference task. First, we introduce Logic-Induced-Knowledge-Search (LINK), a systematic long-tail data generation framework, to obtain factually-correct yet long-tail inferential statements. LINK uses variable-wise prompting grounded on symbolic rules to seek low-confidence statements while ensuring factual correctness. We then use LINK to curate Logic-Induced-Long-Tail (LINT), a large-scale long-tail inferential knowledge dataset that contains 108K statements spanning four domains. We evaluate popular LLMs on LINT; we find that state-of-the-art LLMs show significant performance drop (21% relative drop for GPT4) on long-tail data as compared to on head distribution data, and smaller models show even more generalization weakness. These results further underscore the necessity of long-tail evaluation in developing generalizable LLMs.
AttributionBench: How Hard is Automatic Attribution Evaluation?
Yifei Li
|
Xiang Yue
|
Zeyi Liao
|
Huan Sun
Findings of the Association for Computational Linguistics: ACL 2024
Modern generative search engines enhance the reliability of large language model (LLM) responses by providing cited evidence. However, evaluating the answer’s attribution, i.e., whether every claim within the generated responses is fully supported by its cited evidence, remains an open problem. This verification, traditionally dependent on costly human evaluation, underscores the urgent need for automatic attribution evaluation methods. To bridge the gap in the absence of standardized benchmarks for these methods, we present AttributionBench, a comprehensive benchmark compiled from various existing attribution datasets. Our extensive experiments on AttributionBench reveal the challenges of automatic attribution evaluation, even for state-of-the-art LLMs. Specifically, our findings show that even a fine-tuned GPT-3.5 only achieves around 80% macro-F1 under a binary classification formulation. A detailed analysis of more than 300 error cases indicates that a majority of failures stem from the model’s inability to process nuanced information, and the discrepancy between the information the model has access to and that human annotators do.
2022
RobustLR: A Diagnostic Benchmark for Evaluating Logical Robustness of Deductive Reasoners
Soumya Sanyal
|
Zeyi Liao
|
Xiang Ren
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Transformers have been shown to be able to perform deductive reasoning on inputs containing rules and statements written in the English natural language. However, it is unclear if these models indeed follow rigorous logical reasoning to arrive at the prediction or rely on spurious correlation patterns in making decisions. A strong deductive reasoning model should consistently understand the semantics of different logical operators. To this end, we present RobustLR, a diagnostic benchmark that evaluates the robustness of language models to minimal logical edits in the inputs and different logical equivalence conditions. In our experiments with RoBERTa, T5, and GPT3 we show that the models trained on deductive reasoning datasets do not perform consistently on the RobustLR test set, thus showing that the models are not robust to our proposed logical perturbations. Further, we observe that the models find it especially hard to learn logical negation operators. Our results demonstrate the shortcomings of current language models in logical reasoning and call for the development of better inductive biases to teach the logical semantics to language models. All the datasets and code base have been made publicly available.
Search
Fix data
Co-authors
- Xiang Ren 2
- Faeze Brahman 1
- Yejin Choi 1
- Huihan Li 1
- Xiang Lorraine Li 1
- show all...