2025
pdf
bib
abs
Linguistic Minimal Pairs Elicit Linguistic Similarity in Large Language Models
Xinyu Zhou
|
Delong Chen
|
Samuel Cahyawijaya
|
Xufeng Duan
|
Zhenguang Cai
Proceedings of the 31st International Conference on Computational Linguistics
We introduce a novel analysis that leverages linguistic minimal pairs to probe the internal linguistic representations of Large Language Models (LLMs). By measuring the similarity between LLM activation differences across minimal pairs, we quantify the linguistic similarity and gain insight into the linguistic knowledge captured by LLMs. Our large-scale experiments, spanning 100+ LLMs and 150k minimal pairs in three languages, reveal properties of linguistic similarity from four key aspects: consistency across LLMs, relation to theoretical categorizations, dependency to semantic context, and cross-lingual alignment of relevant phenomena. Our findings suggest that 1) linguistic similarity is significantly influenced by training data exposure, leading to higher cross-LLM agreement in higher-resource languages. 2) Linguistic similarity strongly aligns with fine-grained theoretical linguistic categories but weakly with broader ones. 3) Linguistic similarity shows a weak correlation with semantic similarity, showing its context-dependent nature. 4) LLMs exhibit limited cross-lingual alignment in their understanding of relevant linguistic phenomena. This work demonstrates the potential of minimal pairs as a window into the neural representations of language in LLMs, shedding light on the relationship between LLMs and linguistic theory.
pdf
bib
abs
Unveiling Language Competence Neurons: A Psycholinguistic Approach to Model Interpretability
Xufeng Duan
|
Xinyu Zhou
|
Bei Xiao
|
Zhenguang Cai
Proceedings of the 31st International Conference on Computational Linguistics
As large language models (LLMs) advance in their linguistic capacity, understanding how they capture aspects of language competence remains a significant challenge. This study therefore employs psycholinguistic paradigms, which are well-suited for probing deeper cognitive aspects of language processing, to explore neuron-level representations in language model across three tasks: sound-shape association, sound-gender association, and implicit causality. Our findings indicate that while GPT-2-XL struggles with the sound-shape task, it demonstrates human-like abilities in both sound-gender association and implicit causality. Targeted neuron ablation and activation manipulation reveal a crucial relationship: When GPT-2-XL displays a linguistic ability, specific neurons correspond to that competence; conversely, the absence of such an ability indicates a lack of specialized neurons. This study is the first to utilize psycholinguistic experiments to investigate deep language competence at the neuron level, providing a new level of granularity in model interpretability and insights into the internal mechanisms driving language ability in the transformer-based LLM.
2024
pdf
bib
abs
Do large language models resemble humans in language use?
Zhenguang Cai
|
Xufeng Duan
|
David Haslett
|
Shuqi Wang
|
Martin Pickering
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics
It is unclear whether large language models (LLMs) develop humanlike characteristics in language use. We subjected ChatGPT and Vicuna to 12 pre-registered psycholinguistic experiments ranging from sounds to dialogue. ChatGPT and Vicuna replicated the human pattern of language use in 10 and 7 out of the 12 experiments, respectively. The models associated unfamiliar words with different meanings depending on their forms, continued to access recently encountered meanings of ambiguous words, reused recent sentence structures, attributed causality as a function of verb semantics, and accessed different meanings and retrieved different words depending on an interlocutor’s identity. In addition, ChatGPT, but not Vicuna, nonliterally interpreted implausible sentences that were likely to have been corrupted by noise, drew reasonable inferences, and overlooked semantic fallacies in a sentence. Finally, unlike humans, neither model preferred using shorter words to convey less informative content, nor did they use context to resolve syntactic ambiguities. We discuss how these convergences and divergences may result from the transformer architecture. Overall, these experiments demonstrate that LLMs such as ChatGPT (and Vicuna to a lesser extent) are humanlike in many aspects of human language processing.
pdf
bib
abs
Evaluating Grammatical Well-Formedness in Large Language Models: A Comparative Study with Human Judgments
Zhuang Qiu
|
Xufeng Duan
|
Zhenguang Cai
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics
Research in artificial intelligence has witnessed the surge of large language models (LLMs) demonstrating improved performance in various natural language processing tasks. This has sparked significant discussions about the extent to which large language models emulate human linguistic cognition and usage. This study delves into the representation of grammatical well-formedness in LLMs, which is a critical aspect of linguistic knowledge. In three preregistered experiments, we collected grammaticality judgment data for over 2400 English sentences with varying structures from ChatGPT and Vicuna, comparing them with human judgment data. The results reveal substantial alignment in the assessment of grammatical correctness between LLMs and human judgments, albeit with LLMs often showing more conservative judgments for grammatical correctness or incorrectness.
pdf
bib
abs
A Multimodal Large Language Model “Foresees” Objects Based on Verb Information but Not Gender
Shuqi Wang
|
Xufeng Duan
|
Zhenguang Cai
Proceedings of the 28th Conference on Computational Natural Language Learning
This study employs the classical psycholinguistics paradigm, the visual world eye-tracking paradigm (VWP), to explore the predictive capabilities of LLAVA, a multimodal large language model (MLLM), and compare them with human anticipatory gaze behaviors. Specifically, we examine the attention weight distributions of LLAVA when presented with visual displays and English sentences containing verb and gender cues. Our findings reveal that LLAVA, like humans, can predictively attend to objects relevant to verbs, but fails to demonstrate gender-based anticipatory attention. Layer-wise analysis indicates that the middle layers of the model are more related to predictive attention than the early or late layers. This study is pioneering in applying psycholinguistic paradigms to compare the multimodal predictive attention of humans and MLLMs, revealing both similarities and differences between them.
2023
pdf
bib
abs
Does ChatGPT Resemble Humans in Processing Implicatures?
Zhuang Qiu
|
Xufeng Duan
|
Zhenguang Cai
Proceedings of the 4th Natural Logic Meets Machine Learning Workshop
Recent advances in large language models (LLMs) and LLM-driven chatbots, such as ChatGPT, have sparked interest in the extent to which these artificial systems possess human-like linguistic abilities. In this study, we assessed ChatGPT’s pragmatic capabilities by conducting three preregistered experiments focused on its ability to compute pragmatic implicatures. The first experiment tested whether ChatGPT inhibits the computation of generalized conversational implicatures (GCIs) when explicitly required to process the text’s truth-conditional meaning. The second and third experiments examined whether the communicative context affects ChatGPT’s ability to compute scalar implicatures (SIs). Our results showed that ChatGPT did not demonstrate human-like flexibility in switching between pragmatic and semantic processing. Additionally, ChatGPT’s judgments did not exhibit the well-established effect of communicative context on SI rates.