Zhihui Zheng
2016
Incorporating Label Dependency for Answer Quality Tagging in Community Question Answering via CNN-LSTM-CRF
Yang Xiang
|
Xiaoqiang Zhou
|
Qingcai Chen
|
Zhihui Zheng
|
Buzhou Tang
|
Xiaolong Wang
|
Yang Qin
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
In community question answering (cQA), the quality of answers are determined by the matching degree between question-answer pairs and the correlation among the answers. In this paper, we show that the dependency between the answer quality labels also plays a pivotal role. To validate the effectiveness of label dependency, we propose two neural network-based models, with different combination modes of Convolutional Neural Net-works, Long Short Term Memory and Conditional Random Fields. Extensive experi-ments are taken on the dataset released by the SemEval-2015 cQA shared task. The first model is a stacked ensemble of the networks. It achieves 58.96% on macro averaged F1, which improves the state-of-the-art neural network-based method by 2.82% and outper-forms the Top-1 system in the shared task by 1.77%. The second is a simple attention-based model whose input is the connection of the question and its corresponding answers. It produces promising results with 58.29% on overall F1 and gains the best performance on the Good and Bad categories.
Search
Co-authors
- Yang Xiang 1
- Xiaoqiang Zhou 1
- Qingcai Chen 1
- Buzhou Tang 1
- Xiaolong Wang 1
- show all...
- Yang Qin 1