Conditional Semantic Textual Similarity (C-STS) introduces specific limiting conditions to the traditional Semantic Textual Similarity (STS) task, posing challenges for STS models. Language models employing cross-encoding demonstrate satisfactory performance in STS, yet their effectiveness significantly diminishes in C-STS. In this work, we argue that the failure is due to the fact that the redundant information in the text distracts language models from the required condition-relevant information. To alleviate this, we propose Self-Augmentation via Self-Reweighting (SEAVER), which, based solely on models’ internal attention and without the need for external auxiliary information, adaptively reallocates the model’s attention weights by emphasizing the importance of condition-relevant tokens. On the C-STS-2023 test set, SEAVER consistently improves performance of all million-scale fine-tuning baseline models (up to around 3 points), and even surpasses performance of billion-scale few-shot prompted large language models (such as GPT-4). Our code is available at https://github.com/BaixuanLi/SEAVER.
Graph neural networks (GNNs) have achieved promising performance on semantic dependency parsing (SDP), owing to their powerful graph representation learning ability. However, training a high-performing GNN-based model requires a large amount of labeled data and it is prone to over-fitting in the absence of sufficient labeled data. To address this drawback, we propose a syntax-guided graph contrastive learning framework to pre-train GNNs with plenty of unlabeled data and fine-tune pre-trained GNNs with few-shot labeled SDP data. Through extensive experiments conducted on the SemEval-2015 Task 18 English dataset in three formalisms (DM, PAS, and PSD), we demonstrate that our framework achieves promising results when few-shot training samples are available. Furthermore, benefiting from the pre-training process, our framework exhibits notable advantages in the out-of-domain test sets.
A recent success in semantic dependency parsing shows that graph neural networks can make significant accuracy improvements, owing to its powerful ability in learning expressive graph representations. However, this work learns graph representations based on a static graph constructed by an existing parser, suffering from two drawbacks: (1) the static graph might be error-prone (e.g., noisy or incomplete), and (2) graph construction stage and graph representation learning stage are disjoint, the errors introduced in the graph construction stage cannot be corrected and might be accumulated to later stages. To address these two drawbacks, we propose a dynamic graph learning framework and apply it to semantic dependency parsing, for jointly learning graph structure and graph representations. Experimental results show that our parser outperforms the previous parsers on the SemEval-2015 Task 18 dataset in three languages (English, Chinese, and Czech).
Annotated corpora are crucial language resources, and pre-annotation is an usual way to reduce the cost of corpus construction. Ensemble based pre-annotation approach combines multiple existing named entity taggers and categorizes annotations into normal annotations with high confidence and candidate annotations with low confidence, to reduce the human annotation time. In this paper, we manually annotate three English datasets under various pre-annotation conditions, report the effects of ensemble based pre-annotation, and analyze the experimental results. In order to verify the effectiveness of ensemble based pre-annotation in other languages, such as Chinese, three Chinese datasets are also tested. The experimental results show that the ensemble based pre-annotation approach significantly reduces the number of annotations which human annotators have to add, and outperforms the baseline approaches in reduction of human annotation time without loss in annotation performance (in terms of F1-measure), on both English and Chinese datasets.