Zhitong Yang
2022
CR-GIS: Improving Conversational Recommendation via Goal-aware Interest Sequence Modeling
Jinfeng Zhou
|
Bo Wang
|
Zhitong Yang
|
Dongming Zhao
|
Kun Huang
|
Ruifang He
|
Yuexian Hou
Proceedings of the 29th International Conference on Computational Linguistics
Conversational recommendation systems (CRS) aim to determine a goal item by sequentially tracking users’ interests through multi-turn conversation. In CRS, implicit patterns of user interest sequence guide the smooth transition of dialog utterances to the goal item. However, with the convenient explicit knowledge of knowledge graph (KG), existing KG-based CRS methods over-rely on the explicit separate KG links to model the user interests but ignore the rich goal-aware implicit interest sequence patterns in a dialog. In addition, interest sequence is also not fully used to generate smooth transited utterances. We propose CR-GIS with a parallel star framework. First, an interest-level star graph is designed to model the goal-aware implicit user interest sequence. Second, a hierarchical Star Transformer is designed to guide the multi-turn utterances generation with the interest-level star graph. Extensive experiments verify the effectiveness of CR-GIS in achieving more accurate recommended items with more fluent and coherent dialog utterances.
TopKG: Target-oriented Dialog via Global Planning on Knowledge Graph
Zhitong Yang
|
Bo Wang
|
Jinfeng Zhou
|
Yue Tan
|
Dongming Zhao
|
Kun Huang
|
Ruifang He
|
Yuexian Hou
Proceedings of the 29th International Conference on Computational Linguistics
Target-oriented dialog aims to reach a global target through multi-turn conversation. The key to the task is the global planning towards the target, which flexibly guides the dialog concerning the context. However, existing target-oriented dialog works take a local and greedy strategy for response generation, where global planning is absent. In this work, we propose global planning for target-oriented dialog on a commonsense knowledge graph (KG). We design a global reinforcement learning with the planned paths to flexibly adjust the local response generation model towards the global target. We also propose a KG-based method to collect target-oriented samples automatically from the chit-chat corpus for model training. Experiments show that our method can reach the target with a higher success rate, fewer turns, and more coherent responses.
Search
Fix data
Co-authors
- Ruifang He 2
- Yuexian Hou 2
- Kun Huang 2
- Bo Wang 2
- Dongming Zhao 2
- show all...