Zhiwen Tang
2024
Zero-Shot Cross-Domain Dialogue State Tracking via Dual Low-Rank Adaptation
Xiang Luo
|
Zhiwen Tang
|
Jin Wang
|
Xuejie Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Zero-shot dialogue state tracking (DST) seeks to enable dialogue systems to transition to unfamiliar domains without manual annotation or extensive retraining. Prior research has approached this objective by embedding prompts into language models (LMs). Common methodologies include integrating prompts at the input layer or introducing learnable variables at each transformer layer. Nonetheless, each strategy exhibits inherent limitations. Prompts integrated at the input layer risk underutilization, with their impact potentially diminishing across successive transformer layers. Conversely, the addition of learnable variables to each layer can complicate the training process and increase inference latency. To tackle the issues mentioned above, this paper proposes Dual Low-Rank Adaptation (DualLoRA), a plug-and-play architecture designed for zero-shot DST. DualLoRA incorporates two distinct Low-Rank Adaptation (LoRA) components, targeting both dialogue context processing and prompt optimization, to ensure the comprehensive influence of prompts throughout the transformer model layers. This is achieved without incurring additional inference latency, showcasing an efficient integration into existing architectures. Through rigorous evaluation on the MultiWOZ and SGD datasets, DualLoRA demonstrates notable improvements across multiple domains, outperforming traditional baseline methods in zero-shot settings.
DuetSim: Building User Simulator with Dual Large Language Models for Task-Oriented Dialogues
Xiang Luo
|
Zhiwen Tang
|
Jin Wang
|
Xuejie Zhang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
User Simulators play a pivotal role in training and evaluating task-oriented dialogue systems. Traditional user simulators typically rely on human-engineered agendas, resulting in generated responses that often lack diversity and spontaneity. Although large language models (LLMs) exhibit a remarkable capacity for generating coherent and contextually appropriate utterances, they may fall short when tasked with generating responses that effectively guide users towards their goals, particularly in dialogues with intricate constraints and requirements. This paper introduces DuetSim, a novel framework designed to address the intricate demands of task-oriented dialogues by leveraging LLMs. DuetSim stands apart from conventional approaches by employing two LLMs in tandem: one dedicated to response generation and the other focused on verification. This dual LLM approach empowers DuetSim to produce responses that not only exhibit diversity but also demonstrate accuracy and are preferred by human users. We validate the efficacy of our method through extensive experiments conducted on the MultiWOZ dataset, highlighting improvements in response quality and correctness, largely attributed to the incorporation of the second LLM.
2021
High-Quality Dialogue Diversification by Intermittent Short Extension Ensembles
Zhiwen Tang
|
Hrishikesh Kulkarni
|
Grace Hui Yang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
Search