Zhixiong Zeng


2024

pdf bib
Mitigating Training Imbalance in LLM Fine-Tuning via Selective Parameter Merging
Yiming Ju | Ziyi Ni | Xingrun Xing | Zhixiong Zeng | Hanyu Zhao | Siqi Fan | Zheng Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Supervised fine-tuning (SFT) is crucial for adapting Large Language Models (LLMs) to specific tasks. In this work, we demonstrate that the order of training data can lead to significant training imbalances, potentially resulting in performance degradation. Consequently, we propose to mitigate this imbalance by merging SFT models fine-tuned with different data orders, thereby enhancing the overall effectiveness of SFT. Additionally, we introduce a novel technique, “parameter-selection merging,” which outperforms traditional weighted-average methods on five datasets. Further, through analysis and ablation studies, we validate the effectiveness of our method and identify the sources of performance improvements.

2020

pdf bib
Reasoning with Multimodal Sarcastic Tweets via Modeling Cross-Modality Contrast and Semantic Association
Nan Xu | Zhixiong Zeng | Wenji Mao
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Sarcasm is a sophisticated linguistic phenomenon to express the opposite of what one really means. With the rapid growth of social media, multimodal sarcastic tweets are widely posted on various social platforms. In multimodal context, sarcasm is no longer a pure linguistic phenomenon, and due to the nature of social media short text, the opposite is more often manifested via cross-modality expressions. Thus traditional text-based methods are insufficient to detect multimodal sarcasm. To reason with multimodal sarcastic tweets, in this paper, we propose a novel method for modeling cross-modality contrast in the associated context. Our method models both cross-modality contrast and semantic association by constructing the Decomposition and Relation Network (namely D&R Net). The decomposition network represents the commonality and discrepancy between image and text, and the relation network models the semantic association in cross-modality context. Experimental results on a public dataset demonstrate the effectiveness of our model in multimodal sarcasm detection.