Zhizheng Wang
2023
OD-RTE: A One-Stage Object Detection Framework for Relational Triple Extraction
Jinzhong Ning
|
Zhihao Yang
|
Yuanyuan Sun
|
Zhizheng Wang
|
Hongfei Lin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The Relational Triple Extraction (RTE) task is a fundamental and essential information extraction task. Recently, the table-filling RTE methods have received lots of attention. Despite their success, they suffer from some inherent problems such as underutilizing regional information of triple. In this work, we treat the RTE task based on table-filling method as an Object Detection task and propose a one-stage Object Detection framework for Relational Triple Extraction (OD-RTE). In this framework, the vertices-based bounding box detection, coupled with auxiliary global relational triple region detection, ensuring that regional information of triple could be fully utilized. Besides, our proposed decoding scheme could extract all types of triples. In addition, the negative sampling strategy of relations in the training stage improves the training efficiency while alleviating the imbalance of positive and negative relations. The experimental results show that 1) OD-RTE achieves the state-of-the-art performance on two widely used datasets (i.e., NYT and WebNLG). 2) Compared with the best performing table-filling method, OD-RTE achieves faster training and inference speed with lower GPU memory usage. To facilitate future research in this area, the codes are publicly available at https://github.com/NingJinzhong/ODRTE.
2022
Two Languages Are Better than One: Bilingual Enhancement for Chinese Named Entity Recognition
Jinzhong Ning
|
Zhihao Yang
|
Zhizheng Wang
|
Yuanyuan Sun
|
Hongfei Lin
|
Jian Wang
Proceedings of the 29th International Conference on Computational Linguistics
Chinese Named Entity Recognition (NER) has continued to attract research attention. However, most existing studies only explore the internal features of the Chinese language but neglect other lingual modal features. Actually, as another modal knowledge of the Chinese language, English contains rich prompts about entities that can potentially be applied to improve the performance of Chinese NER. Therefore, in this study, we explore the bilingual enhancement for Chinese NER and propose a unified bilingual interaction module called the Adapted Cross-Transformers with Global Sparse Attention (ACT-S) to capture the interaction of bilingual information. We utilize a model built upon several different ACT-Ss to integrate the rich English information into the Chinese representation. Moreover, our model can learn the interaction of information between bilinguals (inter-features) and the dependency information within Chinese (intra-features). Compared with existing Chinese NER methods, our proposed model can better handle entities with complex structures. The English text that enhances the model is automatically generated by machine translation, avoiding high labour costs. Experimental results on four well-known benchmark datasets demonstrate the effectiveness and robustness of our proposed model.
Search