Empathetic response generation aims to comprehend the cognitive and emotional states in dialogue utterances and generate proper responses. Psychological theories posit that comprehending emotional and cognitive states necessitates iteratively capturing and understanding associated words across dialogue utterances. However, existing approaches regard dialogue utterances as either a long sequence or independent utterances for comprehension, which are prone to overlook the associated words between them. To address this issue, we propose an Iterative Associative Memory Model (IAMM) for empathetic response generation. Specifically, we employ a novel second-order interaction attention mechanism to iteratively capture vital associated words between dialogue utterances and situations, dialogue history, and a memory module (for storing associated words), thereby accurately and nuancedly comprehending the utterances.We conduct experiments on the Empathetic-Dialogue dataset. Both automatic and human evaluations validate the efficacy of the model. Variant experiments on LLMs also demonstrate that attending to associated words improves empathetic comprehension and expression.
“关系提取旨在识别文本中提到的实体对之间的关系。大语言模型的进步对自然语言处理任务产生了巨大的影响。在这项工作中,我们针对科学领域的关系抽取任务,提出一个名为PGA的数据增强框架,用于提升模型在科学领域的关系抽取的性能。框架引入了两种数据增强的方式,利用大语言模型通过转述原训练集样本,得到句意相同但具备不同表述和形式的伪样本。以及指导大语言模型根据原训练集样本的关系和实体标签,生成暗含对应标签信息的句子。这两种伪样本分别与原数据集共同参与关系抽取模型的训练。实验中PGA框架提高了三个主流模型的科学领域内关系抽取的F1分数。同时,使用大语言模型获得样本也能有效减少人工标注数据的成本。”
Empathetic response generation endeavors to empower dialogue systems to perceive speakers’ emotions and generate empathetic responses accordingly. Psychological research demonstrates that emotion, as an essential factor in empathy, encompasses trait emotions, which are static and context-independent, and state emotions, which are dynamic and context-dependent. However, previous studies treat them in isolation, leading to insufficient emotional perception of the context, and subsequently, less effective empathetic expression. To address this problem, we propose Combining Trait and State emotions for Empathetic Response Model (CTSM). Specifically, to sufficiently perceive emotions in dialogue, we first construct and encode trait and state emotion embeddings, and then we further enhance emotional perception capability through an emotion guidance module that guides emotion representation. In addition, we propose a cross-contrastive learning decoder to enhance the model’s empathetic expression capability by aligning trait and state emotions between generated responses and contexts. Both automatic and manual evaluation results demonstrate that CTSM outperforms state-of-the-art baselines and can generate more empathetic responses. Our code is available at https://github.com/wangyufeng-empty/CTSM
Empathetic response generation aims to generate empathetic responses by understanding the speaker’s emotional feelings from the language of dialogue. Recent methods capture emotional words in the language of communicators and construct them as static vectors to perceive nuanced emotions. However, linguistic research has shown that emotional words in language are dynamic and have correlations with other grammar semantic roles, i.e., words with semantic meanings, in grammar. Previous methods overlook these two characteristics, which easily lead to misunderstandings of emotions and neglect of key semantics. To address this issue, we propose a dynamical Emotion-Semantic Correlation Model (ESCM) for empathetic dialogue generation tasks. ESCM constructs dynamic emotion-semantic vectors through the interaction of context and emotions. We introduce dependency trees to reflect the correlations between emotions and semantics. Based on dynamic emotion-semantic vectors and dependency trees, we propose a dynamic correlation graph convolutional network to guide the model in learning context meanings in dialogue and generating empathetic responses. Experimental results on the EMPATHETIC-DIALOGUES dataset show that ESCM understands semantics and emotions more accurately and expresses fluent and informative empathetic responses. Our analysis results also indicate that the correlations between emotions and semantics are frequently used in dialogues, which is of great significance for empathetic perception and expression.