Zhuoqun Li
2024
Meta-Cognitive Analysis: Evaluating Declarative and Procedural Knowledge in Datasets and Large Language Models
Zhuoqun Li
|
Hongyu Lin
|
Yaojie Lu
|
Hao Xiang
|
Xianpei Han
|
Le Sun
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Declarative knowledge and procedural knowledge are two key parts in meta-cognitive theory, and these two hold significant importance in pre-training and inference of LLMs. However, a comprehensive analysis comparing these two types of knowledge is lacking, primarily due to challenges in definition, probing and quantitative assessment. In this paper, we explore from a new perspective by providing ground-truth knowledge for LLMs and evaluating the effective score. Through extensive experiments with widely-used datasets and models, we get conclusions: (1) In most tasks, benefits from declarative knowledge are greater than those from procedural knowledge. (2) Profits of procedural knowledge are larger than declarative knowledge only in reasoning tasks with simple logic. (3) As pre-training progresses and size increases, model ability to utilize both kinds of knowledge significantly improves, but in different speed. We do detailed analysis for the findings and this can provide primary guidance for evaluation and enhancement of large language models.